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Abstract: The acceleration technique known as Iterated Defect Correction (IDeC) for the numerical
solution of singular initial value problems is investigated. IDeC based on the implicit Euler method
performs satisfactorily and can thus be used for the efficient solution of singular boundary value problems
with the shooting method. Higher order one-step methods like the box scheme or the trapezoidal rule
cannot serve as a basic method because of a break-down of the asymptotic expansions of the global
error caused by the singularity. The theoretical considerations are also supported by a comparison with
extrapolation methods. Finally, it is shown that for similar reasons IDeC cannot be used for singular
terminal value problems.
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1 Introduction

We consider the numerical solution of singular ini-
tial value problems of the form1

z′(t) =
M(t)

t
z(t) + f(t, z(t)), (1a)

B0z(0) = β, (1b)
z ∈ C[0, 1], (1c)

where z and f are n-dimensional vector-valued
functions, M is an n×n matrix, and B0 ∈ Rr×n and
β ∈ Rr are chosen in such a way that problem (1)
is well-posed. More precisely, in [10] and [9] it was
shown under mild smoothness assumptions on f
and M that a restriction on the spectrum of M(0),
namely the absence of purely imaginary eigenvalues
or eigenvalues with positive real parts, is necessary
in order to formulate an initial value problem of the
form (1) having a unique, continuous solution z(t).
In this case, the condition M(0)z(0) = 0 is nec-
essary and sufficient for z ∈ C[0, 1] and provides
n−r linearly independent conditions which the ini-
tial value z(0) has to satisfy. Here, r is the dimen-
sion of the kernel of M(0). This solution is unique
iff the r×r matrix B0Ẽ is nonsingular, where Ẽ is
the basis of the kernel of M(0). If f is k times con-
tinuously differentiable and M ∈ Ck+1[0, 1], then

the solution satisfies z ∈ Ck+1[0, 1].
Moreover, singular terminal value problems are in-
vestigated,

z′(t) =
M(t)

t
z(t) + f(t, z(t)), (2a)

B1z(1) = β, (2b)
z ∈ C[0, 1], (2c)

where again the conditions (2b) yield a well-posed
problem. It was shown in [9] that in this case as
well a special structure of the spectrum of M(0) is
necessary and sufficient for (2) to have a continu-
ous solution2. Thus, n linearly independent con-
ditions (2b) are required to obtain a unique solu-
tion. This solution satisfies z ∈ Ck+1[0, 1] if f is
k times continuously differentiable, M ∈ Ck+1[0, 1]
and the smallest positive real part of the eigenval-
ues of M(0) is greater than k + 1.
Singular ordinary differential equations with
boundary conditions posed at one point arise for
example in the context of the solution of two-
point boundary value problems by shooting meth-
ods. Singular two-point boundary value problems
in turn often describe symmetric solutions of partial
differential equations from applications in physics

1This type of singularity is called a singularity of the first kind.
2We reqire the absence of purely imaginary eigenvalues, eigenvalues with negative real parts or a multiple eigenvalue 0,

where the associated block in the Jordan canonical form is not diagonal.



(see for example [3]), chemistry (cf. [14]) or me-
chanics (buckling of spherical shells, [4]). More-
over, there are some models in ecology (avalanche
run-out, [13]) that are posed as singular initial value
problems of the form (1).
For the numerical solution of (1) various schemes
were proposed. It turns out, however, that many
high-order methods show order reductions when ap-
plied to singular problems. Explicit Runge-Kutta
methods for example show a reduction down to or-
der 2 in general, see [7], and multi-step methods
deviate from their classical convergence order by a
logarithmic term, cf. [6].
Another approach to obtain a high order solution
is to use an acceleration technique: problems (1)
and (2) are first solved with a basic method of
low order and then a suitable iteration procedure is
used to enhance the order of the approximation. To
this aim we consider the Iterated Defect Correction
(IDeC) described in §2. The performance of IDeC
is compared with the extrapolation method.

2 Iterated Defect Correction

For the numerical treatment of (1) we write the ad-
missible intitial condition (1b) in the form z(0) = β̃.
Moreover, we assume to know the approximate
solution z

[0]
h := zh = (z0, . . . , zN ) obtained by

some discretization method ϕh on a grid ∆h :=
(t0, . . . , tN ), ti = ih, h = 1

N , and denote by p[0](t)
the polynomial of degree N interpolating the values
of z

[0]
h . Using this interpolating function, we con-

struct a neighboring problem associated with (1)
and solved exactly by p[0](t),

z′(t) =
M(t)

t
z(t) + f(t, z(t)) + d[0](t), (3a)

z(0) = p[0](0) = β̃, (3b)

where

d[0](t) := p[0]′(t)− M(t)
t

p[0](t)− f(t, p[0](t)).

We now solve (3) by the same numerical method ϕh

and obtain an approximate solution p
[0]
h for p[0](t).

This means that for the solution of the neighboring
problem (3) we know the global error which we can
use to estimate the unknown error of the original

problem (1) and use this information to improve
the solution3,

z
[1]
h := z

[0]
h +

(
Rh

(
p[0]

)
− p

[0]
h

)
.

We use these values to define a new interpolating
polynomial p[1](t) by requiring p[1](tj) = z

[1]
j , j =

0, . . . , N. Now p[1](t) is used to define a neighbor-
ing problem in the same manner as for (3), where
again the exact solution is known, and the numer-
ical solution of this neighboring problem serves to
obtain the second improved solution z

[2]
h := z

[0]
h +(

Rh

(
p[1]

)− p
[1]
h

)
. Clearly, this procedure can be

iteratively continued.
For obvious reasons one does not use one interpo-
lating polynomial for the whole interval in practice.
Instead, a piecewise polynomial function composed
of polynomials of (moderate) degree m is defined to
specify the neighboring problem. Due to classical
theory, see [5], this parameter constitutes a bound
for the level of accuracy which can be achieved
by the iteration described above. This will be ex-
plained in more detail in the following sections.

3 The Implicit Euler Method

If the implicit Euler method is used as basic method
for the IDeC iteration for the solution of (1), the
classical order sequence (cf. [5]) for the respective
iterates can be observed. This was observed exper-
imentally in [1] and [10], and only recently proven
theoretically in [12]. The main result of this paper
is given in the following
Theorem: Consider the IDeC method based on the
implicit Euler rule and on piecewise interpolation
with polynomials of degree m for the numerical so-
lution of problem (1). For the approximations ob-
tained in the course of the iteration,

‖z[j]
h −Rh(z)‖h := max

0≤l≤N
|z[j]

l −z(tl)|=O(hj+1) (4)

holds for j = 0, . . . ,m − 1, provided that f and M
are sufficiently smooth. In this case (polynomials
of degree m are used for the interpolation), further
iteration does not increase the asymptotic order of
the approximation in general.
The main idea of the proof is to use an asymptotic
expansion of the global error of the implicit Euler

3Rh(z) := (z(t0), . . . , z(tN )) for a continuous function z.



method. For sufficiently smooth data f and M we
can prove the existence of an expansion of the form

zh −Rh(z) =
m∑

j=1

hjRh(ej) + rh, (5)

for any m, where ej , j = 1, . . . , m, are smooth func-
tions defined by the variational equations, singular
initial value problems which are linearized versions
of (1) with homogeneous initial conditions. More-
over, ‖rh‖h = O(hm+1). Under the same assump-
tions, similar expansions exist for the neighboring
problems (3) and equally for p

[l]
h , l = 1, . . . , m− 2.

Since the neighboring problems depend on h, so do
the associated error expansions. Written in terms
of a step-size h̄ = h

ν , ν ∈ N, they read

p
[l]

h̄
−Rh̄

(
p[l]

)
=

m∑

j=1

h̄jRh̄

(
e
[l]
j

)
+ r

[l]

h̄
. (6)

The functions e
[l]
j may have jump discontinuities

in the first derivatives at the switch points between
the polynomials defining the neighboring problems,
but in the interior of these intervals they have the
same smoothness properties as ej from (5). For the
remainder term, a similar estimate holds which is
independent of h.
Let h̄ := h. Then from the existence of the er-
ror expansions for the original and the neighboring
problems we can conclude for l = 0, . . . , m− 2

Rh(z)−z
[l+1]
h =

m∑

j=1

hj
(
Rh(ej)−Rh

(
e
[l]
j

))
+rh−r

[l]
h .

(7)
Consequently, the proof is completed by showing
that

‖Rh(ej)−Rh

(
e
[l]
j

)
‖h = O(h2+l−j), (8)

holds for j = 1, . . . , m, l = 0, . . . ,m − 2. For the
technical details of the proof we refer to [12].
Thus, for smooth data f and M , the IDeC method
based on the implicit Euler scheme can potentially
yield approximations to singular initial value prob-
lems of an arbitrary order. This fact was for exam-
ple used successfully in a shooting code for singular
boundary value problems4. For numerical results
of this effort see [1], or [11] for a theoretical inves-
tigation of shooting methods.

The existence of an error expansion (5) also makes
the use of extrapolation methods possible. Thus,
the classical order sequence O(h), O(h2), . . . could
be observed for Richardson extrapolation based on
the implicit Euler method, cf. [2].
It seems natural however to improve the efficiency
of the IDeC method by using a higher order scheme
like the box scheme or the trapezoidal rule as ba-
sic method, where for regular problems order se-
quences O(h2), O(h4), . . . are observed, or alterna-
tively to use the (computationally cheaper) explicit
Euler method. It is the aim of the next sections to
show why neither of these is possible for singular
initial value problems.

4 The Box Scheme

A proof of convergence of the box scheme ap-
plied to (1) was given in [8]. It turns out that
it retains its classical convergence order O(h2) ex-
cept for the case where a multiple eigenvalue 0
of M(0) occurs. Here, the convergence order is
O(| ln(h)|n0−1h2), where n0 denotes the dimension
of the largest Jordan block associated with the
eigenvalue 0. Clearly, the numerical solution zh

cannot have an asymptotic error expansion (5).
The IDeC method doesn’t work for these problems
in general, see the numerical experiments in [2].
But even when the basic solution shows its clas-
sical convergence order, IDeC need not work suc-
cessfully. This can be seen from the numerical re-
sults for the test problem (9) in Table 1, which lists
maximal absolute error, empirical rate of conver-
gence and error constant for the basic solution and
the first IDeC iterate, respectively. Further itera-
tion does not increase the order of accuracy. The
reason for this failure is the break-down of the ex-
pansion (5) for the problem

z′(t) =
1
t

(
0 1
−15 −8

)
· z(t)

+ e2tt

(
0

4t2 + 26t + 35

)
, (9a)

z(0) = (0, 0), (9b)

with exact solution z(t) = (t2e2t, 2(t + 1)t2e2t) ∈
C∞[0, 1]. The coefficient functions can easily be

4We have to restrict ourselves to BVPs where the IVPs associated with shooting are well-defined.



h δ0 p0 c0 δ1 p1 c1

1/5 · 2−3 4.0 · 10−02 1.999 −6.3 · 10+01 2.6 · 10−03 1.996 −4.1 · 10+00

1/5 · 2−4 1.0 · 10−02 1.999 −6.4 · 10+01 6.6 · 10−04 1.999 −4.2 · 10+00

1/5 · 2−5 2.5 · 10−03 1.999 −6.4 · 10+01 1.6 · 10−04 1.999 −4.2 · 10+00

1/5 · 2−6 6.2 · 10−04 1.999 −6.4 · 10+01 4.1 · 10−05 1.999 −4.2 · 10+00

1/5 · 2−7 1.5 · 10−04 1.999 −6.4 · 10+01 1.0 · 10−05 1.999 −4.2 · 10+00

1/5 · 2−8 3.9 · 10−05 1.999 −6.4 · 10+01 2.5 · 10−06 1.999 −4.2 · 10+00

1/5 · 2−9 9.7 · 10−06 1.999 −6.4 · 10+01 6.4 · 10−07 1.999 −4.2 · 10+00

1/5 · 2−10 2.4 · 10−06 1.999 −6.4 · 10+01 1.6 · 10−07 1.999 −4.2 · 10+00

Table 1: IDeC with box scheme for (9)

computed from the associated variational equa-
tions. It turns out that

e1(t) = (0, 0),

e2(t) =
(
− c1

5
t−5 −

(c2

3
+ 1

)
t−3 − 1 + O(t), . . .

c1t
−5 + (c2 + 3)t−3 − 2 + O(t)

)
,

and there is no choice of the constants in the gen-
eral solution for e2 which would yield a continuous
solution satisfying the homogeneous initial condi-
tions. Thus, the asymptotic error expansion breaks
down and IDeC does not improve the convergence
orders of the iterates. The basic convergence order
O(h2) is preserved nonetheless.
In [2] examples can be found where, due to spe-
cial properties of the solution, the asymptotic error
expansion breaks down at a later stage. This is
reflected in the performance of IDeC, yielding or-
der sequences O(h2), O(h4), O(h6), O(h6), . . . for
instance.

5 The Trapezoidal Rule

When analyzing the trapezoidal rule, we are faced
with a different situation. The basic convergence
order O(h2) could be shown for all well-posed prob-
lems (1) in [8]5. In this case, however, even the
existence of smooth coefficient functions ej in (5)
does not guarantee the existence of a smooth er-
ror expansion. This paradoxical situation is obvi-
ously caused by the fact that the remainder term
in (5) cannot be estimated at the necessary level
of accuracy. We confirm this fact by comparing
the performance of IDeC with that of extrapola-
tion. For regular problems, we expect to observe

order sequences O(h2), O(h4), . . . for both meth-
ods. When applied to (9), however, IDeC shows
a sequence O(h2), O(h3) without further improve-
ment after the first IDeC step, see [2]. This behav-
ior is also reflected in the asymptotic properties of
extrapolation as listed in Table 2. No better result
than O(h3) could be achieved.
In contrast to this example, however, for many
other test problems the classical order sequence can
be observed for both acceleration methods, cf. [2].

6 The Explicit Euler Method

In the view of the failure of higher order methods, it
seems natural to try the (computationally cheaper)
explicit Euler method instead of the implicit Eu-
ler rule as a basis for IDeC. Although the classi-
cal convergence order of the explicit Euler, O(h),
holds (see [8]), the IDeC based on this method does
not work satisfactorily for (1). Due to an appar-
ent break-down of the asymptotic error expansion,
for the majority of test problems no higher conver-
gence order than 2 can be expected. As in §5 this is
confirmed by the identical behavior of the extrap-
olation method. For a more detailed discussion see
[2].

7 Terminal Value Problems

To explain the behavior of the IDeC method for (2),
we restrict our attention to the explicit Euler rule.
The behavior of the other methods is essentially
similar6.
The proof of the basic convergence order O(h) of
the explicit Euler method for (2) requires only slight
modifications of the techniques for the implicit Eu-

5Note that an evaluation of the right-hand side at t = 0 can be replaced by z′(0), which is known in the case of (1).
6For implicit methods, however, there are additional difficulties due to the evaluation of the right-hand side at t = 0.



h δ0 p0 c0 δ1 p1 c1

1/5 · 2−2 2.0 · 10−02 1.999 8.2 · 10+00 1.0 · 10−04 2.974 7.8 · 10−01

1/5 · 2−3 5.1 · 10−03 2.000 8.2 · 10+00 1.3 · 10−05 2.994 8.4 · 10−01

1/5 · 2−4 1.2 · 10−03 2.000 8.2 · 10+00 1.6 · 10−06 2.999 8.5 · 10−01

1/5 · 2−5 3.2 · 10−04 2.000 8.2 · 10+00 2.1 · 10−07 3.000 8.6 · 10−01

1/5 · 2−6 8.0 · 10−05 2.000 8.2 · 10+00 2.6 · 10−08 3.000 8.6 · 10−01

1/5 · 2−7 2.0 · 10−05 2.000 8.2 · 10+00 3.2 · 10−09 3.000 8.6 · 10−01

1/5 · 2−8 5.0 · 10−06 2.000 8.2 · 10+00 4.1 · 10−10 3.000 8.6 · 10−01

1/5 · 2−9 1.2 · 10−06 2.000 8.2 · 10+00 5.1 · 10−11 3.000 8.6 · 10−01

Table 2: Extrapolation with trapezoidal rule for (9)

ler method for (1). Nonetheless, IDeC breaks down
due to a counter-intuitive unsmoothness of the so-
lutions of the variational equations. Recall that
the smoothness of the solution of a problem of the
form (2) depends not only on the smoothness of the
data f and M , but also on the eigenvalues of M(0).
Thus, it may occur that even if a problem’s solution
is sufficiently smooth, this does not hold for the so-
lutions of the associated variational equations. This
is the case for the following test problem.

z′(t) =
(

0 1
0 1

)
· z(t)

+ tet

(
0

t2 + 4t + 2

)
, (10a)

z(1) = (e− 1, 3e + 1), (10b)

with exact solution z(t) = (t2et + t−2, (2+ t)t2et +
t) ∈ C∞[0, 1]. The coefficient functions in (5) are

e1(t) =
(7e

2
+ 2t ln(t), 2t ln(t)

)
+ O(t),

e2(t) =
(
− 7

6
+

5e
3

+ 6t ln(t), . . .

− 1 + 6t ln(t)
)

+ O(t),

e3(t) =
(
− 1

6
t−1 − 3 + 6t ln(t), . . .

− 1
6
t−1 − 3 + 6t ln(t)

)
+ O(t).

From this observation, it is clear why the
IDeC for this problem shows the order sequence
O(h), O(h2), . . . without further improvement, see
Table 3.
The early break-down of the error expansion can be
explained by the fact that the positive eigenvalue
of M(0) for (10) is equal to 1. If this value is larger,
longer expansions can be derived for problems (2).
Nonetheless, ej become unsmooth eventually even
in this case.

8 Conlusions

It turns out that Iterated Defect Correction can in-
deed be used to obtain high-order approximations
for singular initial value problems (1). However,
this is only the case when the implicit Euler method
is used as basic method. Higher order methods like
the box scheme or the trapezoidal rule and com-
putationally cheaper methods like the explicit Eu-
ler method cannot be used to serve this purpose.
The reason is the break-down of the expansions for
their global error defined in (5), which we found to
be crucial for the fast convergence of the IDeC, see
the proof for the implicit Euler method in [12].
For terminal value problems (2), similar effects
could be observed. In this case, however, the reason
for the break-down of (5) seems to be an unsmooth-
ness of the solutions of problems (2) related to the
spectrum of the Matrix M(0).
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fangswertprobleme zweiter Ordnung. Ph.D.
Thesis, Inst. for Appl. Math. and Numer.
Anal., Vienna Univ. of Technology, Austria,
1998.

[9] O. Koch, P. Kofler, and E.B. Weinmüller.
Analysis of Singular Initial and Terminal
Value Problems. Techn. Rep. Nr. 125/99, Inst.
for Appl. Math. and Numer. Anal., Vienna
Univ. of Technology, Austria, 1999.

[10] O. Koch, P. Kofler, and E.B. Weinmüller. The
Implicit Euler Method for the Numerical So-
lution of Singular Initial Value Problems. To
appear in Appl. Num. Math.

[11] O. Koch and E. B. Weinmüller. The Con-
vergence of Shooting Methods for Singular
Boundary Value Problems. Submitted to
Math. Comp.

[12] O. Koch and E. B. Weinmüller. Iterated Defect
Correction for the Solution of Singular Initial
Value Problems. Submitted to SIAM J. Nu-
mer. Anal.

[13] D. M. McClung and A. I. Mears. Dry-flowing
avalanche run-up and run-out. J. Glaciol.
Vol.41, No.138, 1995, pages 359–372.

[14] S.V. Parter, M.L. Stein, and P.R. Stein. On
the Multiplicity of Solutions of a Differential
Equation arising in Chemical Reactor Theory.
Techn. Rep. 194, Dept. Computer Sciences,
Univ. of Wisconsin, 1973.


