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1 Introduction

The singular boundary value problem we discuss here originates from the Cahn-Hillard theory,
which is used in hydrodynamics to study the behavior of non-homogeneous fluids. In [3], the
density profile equation for the description of the formation of microscopical bubbles in a non-
homogeneous fluid (in particular, vapor inside one liquid) is derived. In the form of the equation
derived in [9], a nonlinear boundary value problem for a scalar second order ordinary differential
equation for the density ρ of the medium results. In dimensionless parameters this reads

ρ′′(r) +
N − 1

r
ρ′(r) = 4λ2(ρ(r) + 1)ρ(r)(ρ(r) − ξ), (1a)

ρ′(0) = 0, ρ(∞) = ξ. (1b)

Here, λ is a parameter which may be chosen as λ = 1 without restriction of generality. N
denotes the dimension of the problem, which in the physically meaningful case is N = 3.
Finally, 0 < ξ < 1 is varied such as to reflect different physical situations.

We are interested in computing a monotonously increasing solution for 0 < r < ∞ (“bubble-
type solution”). When such a solution exists it has exactly one zero R in that interval (which
can be interpreted as the bubble radius). Furthermore, it can be shown that −1 < ρ(0) < 0
and −1 < ρ(r) < ξ, r > 0, and that ρ′(∞) = 0 and |ρ(0)| < ∞. Finally, it turns out that
the solution features an interior layer, which gets sharpers as ξ → 1. All these properties have
been discussed in [9], see also [8].

2 Transformation to a Finite Interval

Here, we propose to solve (1) via transformation to a singular boundary value problem on a
finite interval. To this end, two different approaches can be adopted: Transformation to a first
order ODE via the Euler transformation, and subsequent transformation to the interval [0, 1],
or transformation of the second order problem to [0, 1] and direct solution in the second order
formulation. In both cases, we approximate the solution numerically using a collocation solver
which is currently being developed for higher order ODEs [6]. We stress here, however, that
the resulting singular problems of first and second order are not equivalent.

2.1 First Order Problem

First, we transform (1a) to first order by the Euler transformation z(r) = (z1(r), z2(r)) =
(ρ(r), rρ′(r)). Subsequently, we split the interval (0,∞) = (0, 1] ∪ [1,∞), and transform
the second interval to (0, 1]. Thus, we obtain a singular boundary value problem for z(s) =
(z1(s), z2(s), z3(s) = z1(1/s), z4(s) = z2(1/s)), s ∈ (0, 1],

z′(s) =

(

M
s

0
0 −M

s

)

z(s) +

(

f(s, z1(s), z2(s))
g(s, z3(s), z4(s))

)

, (2)
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where

M =

(

0 1
0 2 − N

)

,

f(s, z1, z2) =

(

0
4λ2s(z1 + 1)z1(z1 − ξ)

)

,

g(s, z3, z4) =

(

0
−4λ2 1

s3 (z3 + 1)z3(z3 − ξ)

)

.

The boundary conditions in the new variables read

z2(0) = 0, z3(0) = ξ, z1(1) = z3(1), z2(1) = z4(1). (3)

The same transformation is carried out in detail for other boundary value problems on semi-
infinite intervals in [2].

In order to discuss the well-posedness of (2), (3) within the framework of the theory of
singular boundary value problems developed in [4] and [5], we linearize the problem at the
exact solution (using certain properties derived in [9]). This results in

y′(s) =

(

N(s)
s

0

0 A(s)
s3

)

y(s), (4)

where

N(s) =

(

0 1
4λ2s2(3z2

1(s) + 2(1 − ξ)z1(s) − ξ) 2 − N

)

,

A(s) =

(

0 −2s2

−4λ2(3z2
3(s) + 2(1 − ξ)z3(s) − ξ) (N − 2)s2

)

,

and the boundary conditions the same as (3), but with the homogeneous boundary value
y3(0) = 0. From the boundary conditions for z it follows that

N(0) = M, A(0) =

(

0 0
−4λ2ξ(ξ + 1) 0

)

.

Consequently, y2(0) = y3(0) = 0 are necessary and sufficient conditions for a continuous solution
of (4) to exist.

It is interesting to note at this point that alternatively to (1b), the boundary conditions

ρ′(0) = 0, ρ′(∞) = 0 (5)

are used in the literature [3]. In the first order formulation (2), these conditions do not yield a
well-posed problem, as has been demonstrated above. This is not necessarily a contradiction,
however, as the boundary condition may be admissible for the second-order problem nonethe-
less, see §2.2.
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2.2 Second Order Problem

If instead of transforming to a first order problem, we transform (1a) to the interval [0, 1] in
the second order formulation, we obtain (cf. [7])

z′′2 (s) =
N − 3

s
z′2(s) + 4λ2 1

s4
(z2(s) + 1)z2(s)(z2(s) − ξ). (6)

Together with the original equation (z1 = ρ) and the boundary conditions

z′1(0) = 0, z2(0) = ξ, z1(1) = z2(1), z′1(1) = −z′2(1) (7)

we obtain a boundary value problem for a second order ODE with an essential singularity.
To check the well-posedness of this problem, no theory for second-order singular problems

exists so far. Thus, we have to transform the linearized problem to the first order and discuss
the resulting problem.

The linearization of problem (1a), (6) about the exact solution z(s) reads

y′′(s) =
A1(s)

s
y′(s) +

A0(s)

s2
y(s), (8)

where

A1(s) =

(

1 − N 0
0 N − 3

)

,

A0(s) =

(

s2c(s, z1(s)) 0
0 1

s2 c(s, z2(s))

)

,

c(s, z) = 4λ2(3z2 + 2(1 − ξ)z − ξ).

If we now use the Euler transformation x(s) = (y(s), sy′(s)) to transform (8) to a first order
equation, we obtain

x′(s) =
C(s)

s
x(s) =

C̃(s)

s3
x(s), (9)

with

C(s) =

(

0 I
A0(s) I + A1(s)

)

, C̃(0) =











0 0 0 0
0 0 0 0
0 0 0 0
0 c(0) 0 0











.

Since c(0) 6= 0, we can conclude that x2(0) = 0 is a necessary condition for the well-posedness
of the problem, which corresponds to y2(0) = 0. The condition y′

1(0) = 0 is not reflected in this
formulation, however. This makes the approach outlined in this section unsatisfactory from
a theoretical point of view. This does not imply that the second order formulation is of no
practical use: We have to point out, that there is some freedom of choice in the transformation
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to first order. The standard transformation x(s) = (y(s), y′(s)) leads to the same boundary
condition for the first order problem, however. As of yet, no standard way to analyze second
order problems with an essential singularity has been developed. In any case, the formulation
(9) appears to rule out the boundary conditions (5). Indeed, in [3] the condition is not explicitly
used in the numerical solution of the boundary value problem, but rather a shooting approach
is adopted and it is not apparent from the numerical results whether the formulation yields a
well-posed problem. Thus, possibly (5) may indeed not lead to a well-posed singular problem
on [0, 1].

3 Numerical Results

We start the presentation of the numerical results obtained for problem (1) by collocation with
the second order formulation (1a), (6) and (7). This problem statement turned out to be easier
computationally, as there are fewer equations to solve, and hence fewer initial guesses are re-
quired for the solution of the collocation equations. Even though the wellposedness of the second
order, singular problem on the interval [0, 1] is not clear theoretically, our computations yielded
promising results. For all the computation reported in this paper, we used kollimplizitmix,
a new collocation solver for singular differential equations of arbitrary, mixed order in implicit
form which is currently being developed at our institute [6]. For both the second order problem
(1a), (6), (7) and the first order problem (2), we compare the results in the explicit formulations
with a restatement of the differential equations in implicit form, where no negative powers of
the independent variable appear in the right-hand side.

3.1 Numerical Results for the Second Order Problem

First, we discuss the problem formulation of (1a), (6) and (7) where the equation (6) is multi-
plied by s4, s ∈ (0, 1],

z′′1 (s) = 4λ2(z1(s) + 1)z1(s)(z1(s) − ξ) −
N − 1

s
z′1(s), (10a)

s4z′′2 (s) = s3(N − 3)z′2(s) + 4λ2(z2(s) + 1)z2(s)(z2(s) − ξ), (10b)

which can – in that form – only be solved with implicit solvers. In this experiment, the
singularity of the first kind which is present in (10a) is not removed. The first initial profile we
used for the Newton solver of kollimplizitmix for ξ = 0.5 was

z1(s) = −1 and (11a)

z2(s) = −
3

2
s +

1

2
, s ∈ (0, 1]. (11b)

The computation (the tolerance on the Newton increment is always set to 1e−10) with two
equidistant collocation points and 10 intervals was successful, and so we could use this approx-
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imate solution as initial profile (cf. Figure 1) for further computations with varying collocation
points and number of collocation intervals.

0 0.2 0.4 0.6 0.8 1
−0.98

−0.96

−0.94

−0.92

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 1: 10 intervals, two equidistant collocation points

3.1.1 Empirical Convergence Orders

First, we study the empirical convergence orders of our collocation methods for the case where
ξ = 0.5. We define z{i}p , p = 1, 2, as the numerical solution of (10) computed at 4 ·2i−1 intervals
(with the exception of one collocation point, where 8 · 2i−1 intervals were used). Let

konv est i :=
ln
(

‖z
{i}
p −z

{i+1}
p ‖

‖z
{i+1}
p −z

{i+2}
p ‖

)

ln 2
,

where ‖ · ‖ denotes the maximum norm on the space of grid vectors (here, the solution values
at the mesh points – the end points of the collocation intervals – are used only).

Tables 1–5 show that the convergence orders for the singular problem (10) correspond with
the general theoretical results for collocation methods applied to regular boundary value prob-
lems. For Gaussian collocation points we even observe superconvergence, which is surprising in
the case of a problem with an essential singularity (cf. Table 6).
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i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 7.706994e−03 1.00
2 3.834069e−03 1.79
3 1.102951e−03 1.94
4 2.869508e−04 1.98
5 7.239566e−05 1.99
6 1.813940e−05 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 6.734136e−02 2.02
2 1.655467e−02 1.76
3 4.869139e−03 1.92
4 1.282108e−03 1.98
5 3.241564e−04 1.99
6 8.124505e−05 —

Table 1: One equidistant collocation point

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 7.047587e−02 2.72
2 1.065506e−02 2.07
3 2.530996e−03 1.79
4 7.273203e−04 1.95
5 1.881034e−04 1.98
6 4.743891e−05 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 1.750105e−01 2.10
2 4.069410e−02 1.85
3 1.123480e−02 1.78
4 3.271116e−03 1.93
5 8.548392e−04 1.98
6 2.162979e−04 —

Table 2: Two equidistant collocation points

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 8.931855e−03 −0.12
2 9.714313e−03 5.03
3 2.952864e−04 4.40
4 1.391326e−05 3.97
5 8.828332e−07 3.99
6 5.538612e−08 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 8.436093e−02 0.88
2 4.575663e−02 5.03
3 1.394671e−03 4.36
4 6.756214e−05 3.98
5 4.281413e−06 3.99
6 2.685386e−07 —

Table 3: Three equidistant collocation points

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 4.052108e−02 2.86
2 5.564251e−03 7.91
3 2.302719e−05 2.89
4 3.094143e−06 3.93
5 2.026812e−07 3.98
6 1.281511e−08 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 1.796997e−01 2.57
2 3.025414e−02 8.13
3 1.079556e−04 2.85
4 1.490041e−05 3.92
5 9.797834e−07 3.98
6 6.201161e−08 —

Table 4: Four equidistant collocation points
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i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 7.508804e−03 7.57
2 3.930525e−05 1.59
3 1.300722e−05 7.57
4 6.822115e−08 5.96
5 1.095187e−09 5.99
6 1.722567e−11 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 2.977417e−02 4.94
2 9.676535e−04 3.79
3 6.965323e−05 7.53
4 3.747167e−07 5.96
5 5.983782e−09 5.98
6 9.451401e−11 —

Table 5: Five equidistant collocation points
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i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 2.454307e−02 6.22
2 3.277156e−04 5.12
3 9.418404e−06 8.22
4 3.154728e−08 5.93
5 5.161539e−10 5.98
6 8.155809e−12 —

i ||z
{i}
2 − z

{i+1}
2 || konv esti

1 8.369461e−02 5.50
2 1.846019e−03 5.19
3 5.044448e−05 8.18
4 1.737186e−07 5.94
5 2.821679e−09 5.97
6 4.475209e−11 —

Table 6: Three Gaussian collocation points

3.1.2 Varying the Value of ξ

For computing solutions with ξ > 0.5 we used a simple pathfollowing procedure, where the
numerical solution obtained for a value of ξ is used as the initial profile for the solution of
the collocation equations for the subsequent value of ξ. As the interior layer gets sharper for
ξ → 1, it becomes increasingly difficult to find a numerical solution of the problem. In that case
the initial profile for the solution of the nonlinear collocation equations has to be chosen very
carefully. However, pathfollowing worked very well in the interval [0.5, 0.8] when increasing ξ
with a stepsize ∆ξ = 0.1. For [0.8, 0.9] a stepsize ∆ξ = 0.01 and a special grid with more grid
points close to the layer was necessary (used grid: [0 : 0.01 : 0.06, 0.061 : 0.0005 : 0.14, 0.15 :
0.01 : 1] at three Gaussian collocation points). Figure 2 gives an overview of the evolution of
the solution for ξ → 0.9.

In comparison to finding solutions for ξ > 0.5, the collocation equations are easy to solve
for ξ < 0.5. E. g. for ξ = 0.2 our procedure even worked for initial profiles consisting of only
straight lines, like z1(s) = −0.5, z2(s) = −0.8s + 0.3, s ∈ (0, 1]. Figure 3 gives a graphical
overview for ξ = [0.005, 0.1, 0.2, . . . , 0.5]. In Figure 4, all solutions given in Figures 2 and 3 are
displayed in one plot. Figure 5 gives all the solution profiles transformed back to the original
domain [0,∞). Table 7 shows for different values of ξ the values of ρ(0) and the bubble radius
R, computed numerically at 1000 intervals and five Gaussian points.
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Figure 2: 1000 intervals, three Gaussian collocation points, ξ = 0.5, 0.6, 0.7, 0.8, 0.9
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Figure 3: 1000 intervals, three Gaussian collocation points, ξ = 0.005, 0.1, 0.2, 0.3, 0.4, 0.5
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Figure 4: 100 intervals, three Gaussian collocation points, ξ = 0.005, 0.1, . . . , 0.9
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Figure 5: Solution transformed back to [0,∞), plotted on [0, 18], ξ = 0.005, 0.1, . . . , 0.9
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ξ ρ(0) R
0.005 -0.0159289136828783 13.38832839442030
0.1 -0.3046629136033505 3.321895964695048
0.2 -0.5677637628759243 2.685731314320864
0.3 -0.7707036640421842 2.582331278753935
0.4 -0.9031250928005992 2.720986515873215
0.5 -0.9711193345410850 3.070009104044001
0.6 -0.9953000352050223 3.695885728344484
0.7 -0.9997788979966252 4.816886913795842
0.8 -0.9999995735610771 7.130991634435890
0.9 -0.9999999999999942 14.16875522106554

Table 7: Values computed with 1000 intervals and five Gaussian points. R denotes the bubble
radius, i. e. ρ(R) = 0

3.1.3 Accuracy of the Computed Values

The convergence orders of the numerical approximations appear to be very stable, indicating
that our results are reliable and accurate. In this section, we try to quantify the accuracy we
can obtain, and also show the differences between the implicit formulation discussed so far and
the explicit problem statement (1a), (6) and (7). The experiments reported in this section
were computed for ξ = 0.5. It turns out that the accuracy of the solution (reflected in the
differences between the solution approximations and the number of unaltered digits when the
step-size is halved) is similar in both problem formulations. However, the condition numbers
of the Jacobian of the collocation equations occurring for the solution approximation accepted
by our Newton solver for each step-size, differ significantly. A possible reason why the large
discrepancy in condition numbers does not seem to influence the obtained accuracy is given in
[10]. Still, it should be advantageous to use the implicit formulation, since bad starting values
for the nonlinear equations in conjunction with bad conditioning could lead to a failure of the
nonlinear solver to converge at all, and the linear algebra may be unreliable in the presence of
large condition numbers. Tables 8–10 give the values of ρ(0), the bubble radius R, the condition
numbers and their order as a function of h for the explicit and implicit formulations, and the
implicit variant where equation (1a) is explicit with a singularity of the first kind. We observe
that the maximally attainable accuracy is of the order of magnitude of round-off error in all
cases, even though the condition numbers are O(1/h6) in the first case and O(1/h3) in the last
case. If (1a) is also multiplied by s, then the condition numbers are O(1/h2), which is optimal
for second order ODEs [1]. Thus, we observe a clear dependence of the condition number of
the collocation equations on the order of the singular terms appearing in the equations.
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i ||z
{i}
1 − z

{i+1}
1 || konv esti ||z

{i}
2 − z

{i+1}
2 || konv esti

1 2.454307e−02 6.22 8.369461e−02 5.50
2 3.277156e−04 5.12 1.846019e−03 5.19
3 9.418404e−06 8.22 5.044448e−05 8.18
4 3.154728e−08 5.93 1.737186e−07 5.94
5 5.161539e−10 5.98 2.821679e−09 5.97
6 8.155809e−12 5.99 4.475209e−11 5.99
7 1.277867e−13 5.64 7.011614e−13 5.95
8 2.553513e−15 — 1.126876e−14 —

i ρ(0) R cond esti cond convi

1 −0.9595766144502999 2.932241252321063 9.911998e+04 −3.01
2 −0.9712771815045127 3.072004143210495 8.043081e+05 −3.00
3 −0.9711237599349815 3.070093397609374 6.500439e+06 −2.99
4 −0.9711193495594734 3.070010564060050 5.210324e+07 −2.99
5 −0.9711193347866662 3.070009059103224 4.164876e+08 −2.99
6 −0.9711193345449642 3.070009102148822 3.328048e+09 −2.99
7 −0.9711193345411442 3.070009104088092 2.660230e+10 −2.99
8 −0.9711193345410848 3.070009104042217 2.127149e+11 —
9 −0.9711193345410852 3.070009104043983 1.701274e+12 —

Table 8: Conditioning and accuracy for three Gaussian points, implicit formulation (10)

3.2 Numerical Results for the First Order Problem

The computations for the first order problem (2) also worked well with kollimplizitmix.
Unfortunately it was more difficult to find a suitable initial profile, as there are more equations
to solve than in the second order problem, and moreover we also require a guess for the profile
of the solution’s derivative. Finally, the interior layer is even more pronounced for the variable
corresponding to the first derivative. We could not find a first guess containing only straight
lines over the whole interval where the Newton solver converged, which does not mean that none
exists. But we were successful with straight lines for z1 and z2 and a polynomial interpolation
of only 3 points for z3 and z4, cf. Figure 6, computed with 3 Gaussian collocation points and 10
intervals (ξ = 0.5). First, the points z3(0) = 0.5, z3(0.5) = 0, z3(1) = −1, z4(0) = 0, z4(0.5) =
0.5, z4(1) = 0 were interpolated by a quadratic polynomial, and subsequently this polynomial
was interpolated on 10 subintervals with collocation polynomials defined for three Gaussian
points. A plot of the solution found with this starting profile is given in Figure 7. We can use
this solution as an initial profile for further computations.
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i ||z
{i}
1 − z

{i+1}
1 || konv esti ||z

{i}
2 − z

{i+1}
2 || konv esti

1 2.454307e−02 6.22 8.369461e−02 5.50
2 3.277156e−04 5.12 1.846019e−03 5.19
3 9.418404e−06 8.22 5.044448e−05 8.18
4 3.154728e−08 5.93 1.737186e−07 5.94
5 5.161539e−10 5.98 2.821679e−09 5.97
6 8.155476e−12 5.99 4.475120e−11 5.99
7 1.282308e−13 5.71 7.024936e−13 5.95
8 2.442491e−15 — 1.132427e−14 —

i ρ(0) R cond esti cond convi

1 −0.9595766144502999 2.932241252321063 1.431590e+04 −1.98
2 −0.9712771815045126 3.072004143210495 6.631216e+04 −2.00
3 −0.9711237599349814 3.070093397609374 2.715011e+05 −2.00
4 −0.9711193495594735 3.070010564060050 1.095890e+06 −1.99
5 −0.9711193347866661 3.070009059103223 4.395917e+06 −1.99
6 −0.9711193345449644 3.070009102148822 1.759544e+07 −1.99
7 −0.9711193345411442 3.070009104088092 7.038791e+07 −1.99
8 −0.9711193345410848 3.070009104042218 2.815440e+08 —
9 −0.9711193345410850 3.070009104043981 1.126140e+09 —

Table 9: Conditioning and accuracy for three Gaussian points, fully implicit formulation, where
(10a) is multiplied by s

3.2.1 Empirical Convergence Orders

To determine the empirical convergence orders for the first order problem with ξ = 0.5, we
define z{i}p , p = 1, 2, as the numerical solution computed at 8 · 2i−1 intervals (exception: one
collocation point, where 16·2i−1 intervals are used). Again, we observe the classical convergence
orders and even superconvergence is present.
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i ||z
{i}
1 − z

{i+1}
1 || konv esti ||z

{i}
2 − z

{i+1}
2 || konv esti

1 2.454307e−02 6.22 8.369461e−02 5.50
2 3.277156e−04 5.12 1.846019e−03 5.19
3 9.418404e−06 8.22 5.044448e−05 8.18
4 3.154728e−08 5.93 1.737186e−07 5.94
5 5.161540e−10 5.98 2.821680e−09 5.97
6 8.155476e−12 5.99 4.475131e−11 5.99
7 1.282308e−13 5.85 7.022716e−13 5.98
8 2.220446e−15 — 1.110223e−14 —

i ρ(0) R cond esti cond convi

1 −0.9595766144502999 2.932241252321063 4.913215e+09 −6.01
2 −0.9712771815045126 3.072004143210495 3.181393e+11 −6.00
3 −0.9711237599349814 3.070093397609374 2.060489e+13 −6.00
4 −0.9711193495594734 3.070010564060050 1.323525e+15 −5.99
5 −0.9711193347866662 3.070009059103223 8.472849e+16 −5.99
6 −0.9711193345449644 3.070009102148822 5.419582e+18 −5.99
7 −0.9711193345411442 3.070009104088092 3.466736e+20 −5.99
8 −0.9711193345410848 3.070009104042218 2.217985e+22 —
9 −0.9711193345410849 3.070009104043982 1.419253e+24 —

Table 10: Conditioning and accuracy for three Gaussian points, explicit formulation (1a), (6),
(7)

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 9.607730e−03 2.12
2 2.199805e−03 2.02
3 5.387899e−04 2.00
4 1.340242e−04 2.00
5 3.346432e−05 2.00
6 8.363478e−06 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 5.567328e−02 2.18
2 1.227883e−02 2.04
3 2.970350e−03 2.00
4 7.383994e−04 2.00
5 1.842405e−04 2.00
6 4.604018e−05 —

Table 11: One equidistant collocation point
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Figure 6: Initial profile: 10 intervals, three Gaussian collocation points
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Figure 7: Solution: 10 intervals, three Gaussian collocation points, computed with simple initial
profile
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i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 5.799088e−04 −1.67
2 1.849743e−03 1.53
3 6.365167e−04 1.89
4 1.710856e−04 1.97
5 4.355464e−05 1.99
6 1.093821e−05 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 3.492535e−02 1.58
2 1.165759e−02 1.65
3 3.690005e−03 1.88
4 9.999764e−04 1.98
5 2.530033e−04 1.99
6 6.351223e−05 —

Table 12: Two equidistant collocation points

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 6.275580e−03 4.45
2 2.861610e−04 4.10
3 1.665095e−05 3.96
4 1.067475e−06 3.99
5 6.713025e−08 3.99
6 4.202072e−09 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 3.027723e−02 4.38
2 1.444260e−03 4.00
3 9.014665e−05 3.96
4 5.771089e−06 3.98
5 3.642802e−07 3.99
6 2.279059e−08 —

Table 13: Three equidistant collocation points

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 2.941775e−03 7.40
2 1.737611e−05 2.68
3 2.708693e−06 3.89
4 1.826766e−07 3.97
5 1.163050e−08 3.99
6 7.302531e−10 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 1.492555e−02 6.22
2 1.992681e−04 3.32
3 1.982639e−05 3.95
4 1.277575e−06 3.98
5 8.043811e−08 3.99
6 5.036571e−09 —

Table 14: Four equidistant collocation points

i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 4.033415e−04 5.29
2 1.028982e−05 7.12
3 7.377518e−08 5.94
4 1.196874e−09 5.98
5 1.887557e−11 5.99
6 2.952083e−13 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 2.189038e−03 5.36
2 5.315586e−05 6.74
3 4.948354e−07 6.03
4 7.555642e−09 6.00
5 1.175035e−10 5.99
6 1.843414e−12 —

Table 15: Five equidistant collocation points
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i ||z
{i}
1 − z

{i+1}
1 || konv esti

1 2.955559e−04 4.78
2 1.074934e−05 6.49
3 1.189372e−07 5.96
4 1.900909e−09 5.99
5 2.986944e−11 5.99
6 4.674039e−13 —

i ||z
{i}
3 − z

{i+1}
3 || konv esti

1 1.680902e−03 4.84
2 5.850010e−05 5.98
3 9.258769e−07 5.85
4 1.594605e−08 5.93
5 2.597591e−10 5.99
6 4.081291e−12 —

Table 16: Three Gaussian collocation points
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3.2.2 Varying the Value of ξ

For ξ ∈ (0, 1) we obtain similar values as for the second order problem. However, the solution
for ξ = 0.9 is more difficult to calculate, so we do not give these results here. Table 17 gives
the values of ρ(0) and R for the respective values of ξ. For comparison, we give the values
computed for the second order problem in brackets.

ξ ρ(0) R
0.005 −0.01592891368292191 13.38832839441593

(−0.0159289136828783) (13.38832839442030)
0.1 −0.3046629136033470 3.321895964695049

(−0.3046629136033505) (3.321895964695048)
0.2 −0.5677637628759235 2.685731314320865

(−0.5677637628759243) (2.685731314320864)
0.3 −0.7707036640421850 2.582331278753934

(−0.7707036640421842) (2.582331278753935)
0.4 −0.9031250928005982 2.720986515873215

(−0.9031250928005992) (2.720986515873215)
0.5 −0.9711193345410835 3.070009104044001

(−0.9711193345410850) (3.070009104044001)
0.6 −0.9953000352050234 3.695885728344480

(−0.9953000352050223) (3.695885728344484)
0.7 −0.9997788979966253 4.816886913796069

(−0.9997788979966252) (4.816886913795842)
0.8 −0.9999995735610769 7.130991634436940

(−0.9999995735610771) (7.130991634435890)

Table 17: Values computed with 1000 intervals and five Gaussian points, where R denotes the
bubble radius, i. e. ρ(R) = 0. The values in brackets are the ones computed for the second order
problem

3.2.3 Accuracy of the Computed Values

To conclude the presentation of our numerical results, we discuss the attainable accuracy and
conditioning of the collocation equations for the first order formulations. Again, the results
are computed for ξ = 0.5. As for the second order problem, the accuracy is similar for the
implicit and explicit formulations, but the order of the condition numbers is different. In this
case, we observe condition numbers O(1/h2) for the implicit formulation where no singular
terms appear in the right-hand side of the ODEs. In this case, it is not possible to obtain the
optimal rate O(1/h) [1] by choosing an implicit formulation. How this could be effected, or if
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it is impossible to obtain the optimal results in this case, has to be further investigated. In the
explicit formulation (2), (3), the condition numbers are O(1/h5).

i ||z
{i}
1 − z

{i+1}
1 || konv esti ||z

{i}
3 − z

{i+1}
3 || konv esti

2 2.955559e−04 4.78 1.680902e−03 4.84
3 1.074934e−05 6.49 5.850010e−05 5.98
4 1.189372e−07 5.96 9.258769e−07 5.85
5 1.900909e−09 5.99 1.594605e−08 5.93
6 2.986944e−11 5.99 2.597591e−10 5.99
7 4.674039e−13 6.03 4.081291e−12 5.99
8 7.105427e−15 — 6.394885e−14 —

i ρ(0) R cond esti cond convi

2 −0.9712627938698611 3.071620838990447 3.232161e+04 −1.98
3 −0.9711244247561622 3.070238049496702 1.321965e+05 −1.99
4 −0.9711193911408309 3.070002169646523 5.283813e+05 −1.99
5 −0.9711193354454427 3.070009388355330 2.110837e+06 −1.99
6 −0.9711193345552939 3.070009093948309 8.434144e+06 −1.99
7 −0.9711193345413068 3.070009102324399 3.370697e+07 −1.99
8 −0.9711193345410869 3.070009104095078 1.347424e+08 —
9 −0.9711193345410842 3.070009104034930 5.387348e+08 —

Table 18: Three Gaussian points, implicit formulation
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