
Approximation Methods in Multi-Particle Quantum Dynamics

Othmar Koch
Vienna University of Technology

Time-Dependent

Schrödinger Eqn. (TDSE)

i
∂ψ

∂t
(x1, . . . , xf , t) = H(t)ψ(x1, . . . , xf , t).

• f � 1 electrons;
|ψ(x1, . . . , xf , t)|2 . . . probability den-
sity for electrons to be located at
x1, . . . , xf at time t.

• The fundamental equation of non-
relativistic quantum mechanics. Its solu-
tion could answer many questions about
the nature of matter.

• But: Exact solution impossible. Di-
rect numerical integration computation-
ally intractable in general for f > 2 ⇒
need for model reduction.

MCTDHF

Multi-configuration time-dependent
Hartree–Fock method: Approximate
solution of TDSE by

ψ(x1, . . . , xf , t) ≈ u :=
∑
J

aJ(t)ΦJ(x, t)

=
∑
j1,...,jf

aj1,...,jf(t)φj1(x1, t) · · · φjf(xf, t).

Dirac–Frenkel variational principle〈
δu

∣∣∣∣i∂u∂t −Hu

〉
= 0 ∀ variations δu.

Additional constraints for uniqueness

〈
φj
∣∣φk〉 = δj,k,

〈
φj

∣∣∣∣∂φk∂t
〉

= 0.

This yields the equations of motion

i
daJ
dt

=
∑
K

〈ΦJ |H|ΦK〉 aK,

i
∂φj

∂t
= (I − P )

∑
k

∑
l

ρ−1
j,l
Hl,kφk,

where

ψj :=
〈
φj|u

〉
,

ρj,l :=
〈
ψj|ψl

〉
,

Hl,k := 〈ψl |H|ψk〉 ,
P :=

∑
j

∣∣φj〉 〈φj∣∣ .
ψj . . . single hole functions
ρ . . . “density matrix”
H . . . “meanfield operator matrix”

Numerical Solution

Test code for 1D problems —
bounded potentials
Method of lines:

• Space discretization (for every t):
Pseudospectral method: Collocation by
plane waves on uniform grid; exponen-
tial convergence.
Global basis functions unfavorable for
parallelization, no grid adaptation!

• Time integration of large system of
ODEs

– Explicit Runge–Kutta methods.
Unreliable for non-smooth problems,
no geometric properties!

– Variational splitting. Low order!

1D model

Electrons in strong, ultrafast laser field:

H(t) :=

f∑
k=1

(
1

2
(−i∇k − A(t))2

+ U(xk) +
∑
l<k

V (xk − xl)

)
,

A(t) := e−t
2

sin(ωt),

U(x) := −
f∑
l=1

U1

(
x− d

(
l − f + 1

2

))
,

U1(x) =
1√

a2 + x2
,

V (x− y) :=
1√

1 + (x− y)2
.

Background: F. Kraus: Atto-second pulses
Science (2002), Nature (2002); laser X-ray

Practical Simulation

• f = 4 electrons, 15 configurations

• Computations by Runge–Kutta, vari-
able step-size, variable order method,
pseudospectral space discretization at
1000 points, 15 optical cycles

• Electron density 〈u|u〉f−1

Polarization, ionization and depletion

From: Koch, Kreuzer, Scrinzi (2005)

Project Aims

•Analytical properties of the solution:
Extension of results for smooth potential
to the singular (Coulomb) case. Domain
of existence.

•Convergence of MCTDHF approxima-
tions as the number of configurations
tends to infinity:
Invertibility of density matrix ρ. Regu-
larity bounds uniform in the number of
configurations. Geometry of the approx-
imation manifold.

•Code for 3D with cylindrical symmetry:
Singular potentials.

• (Adaptive) finite elements for space dis-
cretization:
Local basis functions favorable for paral-
lelization.

•High order time integrator:
Preserve “geometric” properties (e. g. or-
thonormality of orbitals φj). Splitting
idea to treat separately fast and slow so-
lution components.

• Speedup by “H-matrices”:
Evaluation of meanfield terms includes
inner products of the form

〈φi|V |φj〉=
∫∫

φi(x)V (x−y)φj(y) dy dx.

“Correlation”: The integrals have to
be computed for many i, j! Discretiza-
tion and low rank approximation may
be boosted by use of “hierarchical ma-
trices”: Linear complexity for “asymp-
totically smooth” kernels (e. g. Coulomb
interaction).
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