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Time-Dependent
Schrodinger Eqn. (TDSE)
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o f > 1 electrons;

V(.. 2y, £))? ... probability den-
sity for electrons to be located at
Ty,...,xf at time .

e The fundamental equation of non-
relativistic quantum mechanics. Its solu-
tion could answer many questions about
the nature of matter.

e But: Exact solution impossible. Di-
rect numerical integration computation-
ally intractable in general for f > 2 =
need for model reduction.

Numerical Solution

Test code for 1D problems —
bounded potentials
Method of lines:

e Space  discretization (for every t):
Pseudospectral method: Collocation by
plane waves on uniform grid; exponen-
tial convergence.

Global basis functions unfavorable for
parallelization, no grid adaptation!

e Time integration of large system of
ODEs
— Explicit Runge-Kutta methods.

Unreliable for non-smooth problems,
no geometric properties!

— Variational splitting. Low order!

MCTDHF

Multi-configuration time-dependent
Hartree—Fock  method: Approximate
solution of TDSE by
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Dirac—Frenkel variational principle

(s

Additional constraints for uniqueness
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This yields the equations of motion
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t; ... single hole functions
p ... “density matrix”
H ... “meanfield operator matrix”

1D model

Electrons in strong, ultrafast laser field:
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Background: F. Kraus: Atto-second pulses
Science (2002), Nature (2002); laser X-ray

Project Aims

e Analytical properties of the solution:
Extension of results for smooth potential
to the singular (Coulomb) case. Domain
of existence.

e Convergence of MCTDHF approxima-

tions as the number of configurations
tends to infinity:
Invertibility of density matrix p. Regu-
larity bounds uniform in the number of
configurations. Geometry of the approx-
imation manifold.

e Code for 3D with cylindrical symmetry:
Singular potentials.

o (Adaptive) finite elements for space dis-
cretization:

Local basis functions favorable for paral-
lelization.

e High order time integrator:

Preserve “geometric” properties (e. g. or-
thonormality of orbitals ¢;). Splitting
idea to treat separately fast and slow so-
lution components.

e Speedup by “H-matrices”:

Evaluation of meanfield terms includes
inner products of the form

(GVI6)= / SV (z—y)é(y) dy do.

“Correlation”: The integrals have to
be computed for many ¢, 5! Discretiza-
tion and low rank approximation may
be boosted by use of “hierarchical ma-
trices”: Linear complexity for “asymp-
totically smooth” kernels (e. g. Coulomb
interaction).

Practical Simulation

o f =4 electrons, 15 configurations

e Computations by Runge-Kutta, vari-
able step-size, variable order method,
pseudospectral space discretization at
1000 points, 15 optical cycles

e Electron density (u|u)r_q

Polarization, ionization and depletion
From: Koch, Kreuzer, Scrinzi (2005)
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