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DEFECT CORRECTION FOR GEOMETRIC INTEGRATORS
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Abstract. This paper deals with the defect correction principle used to estimate the
error and to improve the accuracy of the numerical solution of ordinary differential
equations. If the basic numerical method is designed for a special type of equation
only, as is the case for many geometric integrators, a splitting approach enables the
application of the defect correction principle in this case as well. We show experi-
mental order results and fixed point properties of iterated defect correction when
applied to various geometric integration methods in this setting.

1 Introduction

In recent years, the importance of using special numerical integration schemes that reflect cer-
tain geometric properties or retain important conserved quantities of the flow of a differential
equation has been widely recognized [2]. Many of these methods are applicable to particular
types of differential equations only.

A cheap and efficient way to estimate the global error of a numerical method used to solve
an ordinary differential equation (ODE) is the defect correction principle. The idea can also
be used to successively improve the accuracy of the numerical solution ([1] and the references
therein). In this acceleration technique, a number of neighboring problems have to be solved,
which are not necessarily of the same type as the original problem. Therefore it may happen
that the neighboring problems cannot be solved by the same geometric integrator as the
original problem. In this paper, we present splitting methods [2] to avoid such difficulties.

2 Splitting Defect Correction

First, we describe the classical version of iterated defect correction [1]. Consider an initial value
problem

z=f(t,2), =z(to) = 2o, (1)

to be solved on the interval [ty, tenq]. The approximate solution zI% := (z, ..., zy) is obtained
by some discretization method ® on a grid (o, ...,ty). Denote by pl%(¢) the polynomial of
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degree N interpolating the values of z/%. Using this interpolating function, we construct a
neighboring problem associated with (1) whose exact solution is p%(¢):

A(t) = f(t,2(1) + dO(2), (2)

where d%(t) := pll(¢) — f(¢,pl%(¢)). We now solve (2) using the same numerical method ®
and obtain an approximate solution p° for pl%(#). This means that for the solution of the
neighboring problem (2) we know the global error which is a good estimate for the unknown
error of the original problem (1). This estimate can be used to improve the first solution,

Now, these values are used to define a new interpolating polynomial pl(¢) by requiring
pli(t;) = z}l}. Again, pll(t) defines a neighboring problem in the same manner as in (2),
where again the exact solution is known, and the numerical solution of this neighboring prob-
lem serves to obtain the second improved solution 2z := 219 + (p[” — ﬁ[”). This process can
be continued iteratively. For obvious reasons one does not use one interpolating polynomial for
the whole interval [ty, tenq] in practice. Instead, piecewise functions composed of polynomials
of (moderate) degree m are defined to specify the neighboring problems.

In many situations, the defect correction principle yields an asymptotically correct error
estimate and a successive improvement in the convergence orders of the respective iterates, up
to a certain limit determined by the smoothness of the problem data and the value of m.

If the basic method @ is a geometric integrator, the neighboring problem (2) has a form to
which the integrator cannot be applied straightforwardly. For example, if the Stérmer-Verlet
method is applied to a Hamiltonian system (see Section 3), (2) is no longer an autonomous,
separated system. Another example is the exponential midpoint rule designed for linear ho-
mogeneous systems.

In order to be able to use iterated defect correction even in these cases, we employ splitting
methods, cf. [2]. To apply Strang splitting to (2), we split the time-dependent vector field into
its components f(t,y) and d’)(t). We denote the numerical flow of f(t,y) by ®;, such that
one step (t,7;) — (t 4+ h,n;1+1) with step size h of the basic scheme ® applied to (1) can be
written as 7,11 = @4 (7;). The numerical flow Ay, of the other component d(t) is defined
by the quadrature rule

App(y) =y + /tt+ DU (1)dr, (3)

where DI’!(¢) is a piecewise polynomial interpolant of degree < m—1 of d'%l(¢). For the purpose
of this paper, we use interpolation at Gaussian points in certain subintervals of length H = mph.
The details of the procedure are given in [3]. Using ®;, and A, the numerical solution of
(2) is computed using the numerical flow

Uin = Avpnjznsz © Pon o Dy pya, (4)

where o denotes the composition of the numerical methods (which means that the result
computed by one method is the starting value for the next method). We call the method
where the solution of the neighboring problems is computed in this way iterated splitting
defect correction (ISDeC).
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3 The Stormer-Verlet Method

The Stormer-Verlet method is a geometric integration scheme of order two which is particularly
suited for the solution of Hamiltonian systems of ODEs like Kepler’s equations of planet motion
(9), or more generally, separated ODEs. The method retains important conserved quantities
of the exact flow like the angular momentum, see below.

Consider a system of two separated autonomous ODEs

p=[f.q), 4=y q. (5)

One step of the Stormer-Verlet method for (5) is defined by

h
Qitv1/2 = qi + 59(1% Qit1/2) (6)
h
Pi+1 =Dpi + 5 (fPir Gi1/2) + F(Pit1s Gisr)2)) (7)
h
Gi+1 = Qi+1/2 + §g(pz'+1, Qit1/2)- (8)

As a numerical example for the application of this method to a Hamiltonian system of diffe-
rential equations consider the Kepler problem, i.e.,

p=—Hyp,q), q=Hyp, q), (9)

where
1

1
H(p1,p2, 1, 2) = —(p% +p§) - .
2 V@i + 43

Note that the Hamiltonian H is constant along the exact flow of the problem. Moreover, the
angular momentum L(p1,ps, q1, ¢2) = q1p2 — qap1 is preserved.

Now, we discuss the asymptotic order of the iterates computed by ISDeC based on the
Stormer-Verlet method. First, we remark that under certain circumstances, the ISDeC itera-
tion converges to a fixed point p*. This fixed point is a piecewise polynomial function, and from
the definition of A, it is clear that this fixed point is characterized by p*(7;)— f(7;, p*(7;)) = 0,
where 7; are the points where D interpolates d° (in our case, Gaussian points). This means
that in this situation the ISDeC iterates converge to a collocation polynomial [1].

Figure 1 gives the absolute errors of the respective ISDeC iterates with respect to the
fixed point at te,q = 27, using the particular initial values from [2] at ¢ = 0 and polynomial
degree m = 6. The left diagram shows these errors on a logarithmic scale plotted against
the step size h, while the diagram on the right shows the empirical convergence orders of the
iterates. The circles o illustrate the error and the convergence order for the fixed point, i.e.,
a collocation solution of order 12. The convergence orders as compared to the fixed point are
O(h?), O(h*), O(h®),.... This corresponds to classical theory which predicts the order to
increase by two in every step if the data is sufficiently smooth [1]. From the triangle inequality
it is clear that the global errors of the iterates as compared to the exact solution have orders
O(h?), O(h?),..., O(h'?), which does not increase further than the order of the fixed point.

Finally, we discuss the conservation of the angular momentum L. It is well known that both
the Stormer-Verlet method and the fixed point of ISDeC, defined by collocation at Gaussian

(10)
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Obr. 1: ISDeC based on Stormer-Verlet, m = 6.

h Stormer  ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
/600 0.00 890:10° 739107 6.00-10° 1.59-10° ' 4.03-10'* 6.48-10 17
/1200 0.00 555107 1.17-107% 2.37-107' 1.58-107'* 9.99-107'® 4.02.10~*
/2400 0.00 3471077 1.83107% 92710 15510717 2451072 246102
/4800 0.00 2.17:10~% 2.86:10~'? 3.62:10~'%® 1.51.1072° 5.98.10-%® 1.51.10~%°
/600
/1200 4.00 5.98 7.98 9.97 11.98 13.98
/2400 4.00 6.00 8.00 9.99 11.99 14.00
/4800 4.00 6.00 8.00 10.00 12.00 13.99

Tabulka 1: Error in the angular momentum for ISDeC based on Stormer-Verlet.

points, preserve this quantity exactly [2]. This is not precisely the case for the ISDeC iterates,
however. Table 1 shows that the angular momentum is preserved up to terms of the order of
the iteration error (as compared with the fixed point p*).

3.1 Composition Methods

The results for the Stormer-Verlet method in Section 3 are encouraging, but we would also
like to be able to use higher order schemes as basic methods for ISDeC to increase the gain in
every step of the iteration. This is possible to some extent.

The Suzuki method uses the composition of five steps of the Stormer-Verlet method to
define a method of order 4 which has similarly favorable geometric properties as the original
method, see [2]. If we use the resulting integrator @, as in (4), the observed order sequ-
ence is O(h*), O(h®), O(h®),...,O(h*™). We can modify our approach in order to obtain
O(h*), O(h®), O(h'?),..., however.

If the composition method is

o =0lo...opl (11)
the ISDeC solution method for the neighboring problem (2) can be chosen as
U =yllo...owlkl (12)

where Wl is a splitting method analogous to (4), see [3]. This new approach yields favorable
results, see Figure 2. Using m = 6, the order sequence of the iteration error to the fixed point
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Obr. 2: ISDeC based on Suzuki, m = 6.

is O(h*), O(h®), O(h'),.... Up to the order of the fixed point, which is again a collocation
solution of order 12, this is equal to the order of the global error.

Related Work: In [4], an IDeC iteration was analyzed which can be reformulated such as
to fit into the context of the above discussion. The basic method is

cI)t,h = ¢t+h/2,h/2 o ¢Zh/za

where ¢* and ¢ are the explicit and the implicit Euler methods, respectively. Consequently, ®
is the implicit trapezoidal rule. ISDeC is realized as

Win = Grrnsansz© Den © Grpo-

In [4] it has been demonstrated for linear problems that the usage of Gaussian points in the
quadrature rule leads to an order sequence O(h?), O(h?),... for the iteration error, which
means that the order of the global error increases by two up to the convergence order of the
fixed point, i.e. O(h*™). This asymptotic behavior is the same as for the geometric integrators
of this paper.

4 Exponential Integrators

First, we consider the exponential midpoint rule, which is a second order method defined for
linear homogeneous ODEs § = A(t)y by

Dy n(y) = exp (RA(E + h/2)) y. (13)

If ISDeC based on the exponential midpoint rule is applied to smooth problems, the same
behavior as for the Stormer-Verlet method can be observed. Results for

0 t  —0.4cos(t)
A(t) = —t 0 0.1t (14)
0.4cos(t) —0.1t 0

are given in Figure 3. In this case the exact flow of the differential equation preserves the norm
of the solution. The solution by the exponential midpoint rule shares this property, while this
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Obr. 3: ISDeC based on exponential midpoint rule, m = 6.

conservation law is violated for the ISDeC iterates, which preserve the norm up to terms of the
order of the iteration error. Note that collocation at Gaussian points also preserves the norm
for (14). Unfortunately, ISDeC in conjunction with the exponential midpoint rule can only be
used successfully if smooth problems are to be solved. This can be demonstrated using the
simple test equation 1y = Ay. In this case the solution obtained by the exponential midpoint
rule corresponds to the exact flow, y(t+h) = exp(Ah)y(t). Nonetheless we may formally apply
ISDeC for this problem. It turns out that for moderate values of A € C the iteration error
successively increases up to its theoretical maximum given by the fixed point [3]. If, however,
the problem is non-smooth in the sense that the modulus of A is large, ISDeC fails already
for reasonable step sizes. Only if |hA| < 1, the expected order sequences can be observed. In
[3] we demonstrate that for A = 1000i, the error of the ISDeC iterates is unacceptably large
for reasonable h. Consequently, ISDeC needs some modification to become useful for error
estimation for the time-dependent Schriodinger equation after space (semi-)discretization. The
favorable results presented in this paper are a starting point for finding a successful ISDeC
version for this important class of problems.
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