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Abstract: In this paper we discuss several variants of the acceleration technique known as Iterated Defect Correc-
tion (IDeC) for the numerical solution of initial value problems for ODEs. A first approximation, computed by

a low order basic method, is iteratively improved to obtain higher order solutions. We propose new versions of

the IDeC algorithm with maximal achievable (super-)convergence order twice as high as in the classical setting.
Moreover, if the basic numerical method is designed for a special type of ODE only, as it is the case for many

geometric integrators, the idea of classical IDeC is not applicable in a straightforward way. Our approach enables
the application of the defect correction principle in such cases as well.
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1 Introduction This provides an estimate for the globadrror ofz{?}
We consider initial value problems by means of applying the given scheme to the neigh-
boring problem. Soon it became clear that the proce-
Z(t) = f(t,2(1), =2(to) = 20, (1) dure can be iterated by considering the new approxi-

o b ved the intervat.. ¢ Let u(t) d mation resulting from the computed error estimate and
° i etﬁo ve cln Iet_ln er:[végol, end\]/\'/ et y(t) '?h ‘ applying the same device again. The resulting method
r.10 e e e>.(ac soi Io_n [%)] (1) € assume thal ;s called Iterated Defect Correction (IDeC), and it has
first approximate solution.’ =

_ solutiony” = (2o,...,2v) IS 00~ pean gyccessfully applied to various classes of differ-
tained by some discretization method on a grid= ential equations.

(to,...,tn). For the time being, we consider the
backward Euler scheme (BEUL), Wheig] is com-
puted from

The purpose of the present paper is to demonstrate
that, while the strategper seis evident and plausible,
the particular choice of the involved algorithmic com-
2 — Zg—1 ponents may be quite subtle. In particular, the way of
e —tp 1 flte,ze), k=1,...,N.  (2) evaluating the defect within an IDeC iteration is often
crucial for success or failure of the method and for its
The technique of defect correction described here wasconvergence behavior. As will be demonstrated below,
first proposed by Zadunaisky in [8] in the context of IDeC should in fact be considered as a ri@mily of
Runge-Kutta schemes, see also Stetter[7] for a geniterative methods, each with its particular advantages.
eral formalism. We first give the basic ideas behind These include variable stepsizes, superconvergence ef-
this approach. A more detailed specification of algo- fects, and suitability for geometric integration.
rithmic components is given in Section 2.

Zadunaisky's original intention was to design an effi- 2 Classical IDeC

cier_1t and reliaple global e_rror_estg}m_at(_e. To this end, | ot ys now describe the technical details of the classi-
a given nume_rlcal approxmaﬂor{ﬂ is interpolated  ¢al IDeC procedure. Using the polynomiaf! (t) of
by a polynomial functiorp%)(¢). This enables us to degree< N which interpolates the values @#0] we

compute the defect, i.e. the residualof (t) w.rt.  jafine the auxiliary neighboring problem
the given ODE, and to define a so-called neighboring

problem to (1). Here the defect is added as an inho-
mogeneity such that the exact solution is simplfj. Z(t) = ft,2(t)) +dOt), z(t)) = 20, (3)

1This approach enables also the estimation of local errors.



whered!”) (t) denotes the defect w.r.t. (1), j =1,...,m. For convenience, here and in the sequel
we use double indexing ; := t;,,4; for grid points

dO(t) := ﬁp[O] (t) — £, p% ). 4) and similarly for grid functiongr = (p,...,¢(n). h
dt denotes the maximal stepsizelaf
We now solve (3) using the same numerical method
: ] h:= max (ty —tg_1)- (8)
as before to obtain an approxmatlpﬁg for the exact k=1,...N

solutionpl®!(#) of (3). Note that for (3) the global er-
rorpp] — Rrp” is known? We expect this error to be

a good estimate for the unknown errzé?] — Rry for
the original problem (1), such that

Note that further iterations do not improve the conver-
gence order: For > m only z,[:} —y(ty) = O(h™)
holds in general. To discuss this convergence behavior
we write the global error in the form

(._ o _ o] [0]
L i (O C A R C S U N
yields an improved numerical solution of (3)Now, wherez% — (s, ..., %) denotes the fixed point of
these values are used to define a new interpolating r MO’ o

. . [v+1]
polynomialp!!(£) by requiringp!!! (1) = ="', Again, the iterationzr” — 2 * , such that the gb'{?}?' error

pl(¢) defines a neighboring problem analogous to (3), IS represented as thf sum of ttegation error 2~ — z;
and the numerical solution of this neighboring prob- &nd the global errori; —y(t;) of the fixed point. The

lem serves to obtain the second improved solutionfixed pointzy. is easily characterized by the property

Zl[g] — ZILO} B (p[rl] B Rppm). This procedure can ]'E_hatdthe_defect vams_hes Tllt cer_tam grlld _pomtfs,ll.e.l, the

be continued iteratively in an obvious manner, yield- Ixe pomi IS & certain co ocajuon SO UF'On of (1). In-

ing a sequence”. 21! >2 of approximations for deed, letp*(¢) denote the continuous piecewise poly-
g q SO nomial function defined by*(ty) = pg(to) = 2o and

Rry, which are recursively computed from p*(£) = p(t) for t € Ji, wherep? () are polynomials

v v— v of degree< m satisfying the collocation equations
A= o - R (@) grees m satsiying \
d * * -
for v = 1,2,.... Note that each:[r”] also provides b (tij) = f(tij,pi(tij), 7=1,...,m. (10)
an estimate for the error @ v=1] via =1 _ L
ot f T oA The defectd* (t) := Lp*(t) — f(t,p*(t)) vanishes
Zr — nry.

at all pointst; ; where the right-hand side of the ac-
In practice one does not use one interpolating polyno-cording neighboring problem is evaluated in course of
mial for the whole intervalto, tena]. Instead, piece-  the backward Euler method. Thus, a defect correction
wise functions composed of polynomials of (moder- step starting frome;: := Rrp* mapsz; onto itself,
ate)bldegreehn are UiEd to ipecgé’ th? neighboring and therefore:: is indeed a fixed point of the defect
problem. Thus we choose the giid= (to,...,tx R R

such thatN = N;m for some integerNy, an)d éorrectlon |terat|or')z.r e

split the integration interval into subintervalg := (,[I;ror[rz] [3,[2rroposmon 2] it follows that Fhe sequence
[tims t(i41ym)- The interpolants!”! (t) are continu- 4T + 2T 7T , ... actually converges tgf. with conver-

ous piecewise polynomial functions? (t) = p)(¢), gence rat@)(h) such that (cf. (9))

t e Ji, wherepz[”] (t) are polynomials of degre€ m. ZI[C”} —y(tr) = O(h**Y) + O(hP) = O(h™in(+Lp)y,
Now, for sufficiently smooth data functiongt, z) it (11)
can be shown that the approximaﬁm&g satisfy wherep denotes the order of the fixed point. Note that

the assumption of a piecewise equidistant rid es-
z,E”] —y(ty) = O0M**Y), v=0,...,m—1, (7) sentalinthe proof of this proposition. For such a grid
the order of the fixed point is = m for all k.
if the backward Euler scheme (2) is carried out on & op, the other hand, for a grid
piecewise equidistargrid I', wheret; ; — t;; 1 =
h; = (ti,m — tip)/m for: = 0,...,N; — 1 and t; :ti,O‘i‘(ti,m_ti,O)Cj, ji=1,....m (12)

’Here, Rr denotes the restriction opera{os, tena] — T
3For the construction of efficient error estimates for collocation schemes based on the idea of defect correction see [1].



N; | BEUL IDeC 1 IDeC 2 IDeC 3 IDeC4 | Radaulla
2 | 5611072 1.351072 1.731072 8.2010~° 4.371073 | 2.2910°6
4 |2841072 5381072 9.3810~% 8.8910~* 2.4110°3 | 7.2710°8
8 |1.431072 2.3210% 4.85107% 6.9710~* 1.231073 | 2.31107Y
16 | 7.1710~2 1.06107% 2.4710~3 4.1610~* 6.1410°*| 7.2910°10

4 0.98 1.33 0.88 —3.44 0.86 4.97
8 0.99 1.21 0.95 0.35 0.97 4.98
16 0.99 1.12 0.98 0.74 1.00 4.99

Table 1: Classical IDeC based on Radaulla nodes (degree 3) for the problem:’(t) = —(z(t) — sin(¢) —
2) + cos(t), z(0) = 2, with exact solutiorz(t) = sin(¢) + 2. Global error and observed order are displayed at
tend = 3.0. N7 denotes the number of subintervdisc [0, t.,q] €ach having the same lengthy /.

based on Radaullanodés< ¢; < ... < ¢, = 1, SU- position of the numerical flow®, ,, andA, 5, cf. [4,
perconvergence,, — y(tim) = O(h*™~!) holds for  Section I1.5].

the fixed pointz: at the endpoints; ,, of the subin- Note that also the classical version of IDeC described
tervals J;. This means that in case of fixed point jn Section 2 can be interpreted within this framework,

convergence with convergence ratgh) we would  npamely if we usd.ie-Trotter splitting[4],
havep = 2m — 1 in (11) at these points. Unfortu-

nately, we do not observe this convergence rate for Uy =Prp 0y, (15)
such nonequidistant grids. Convergence, if present at _ _ _
all, occurs at a much slower rate, as demonstrated invhereA  is defined by the simple quadrature rule

Table 1. Ayp(z) = 2+ hd(t + h). (16)
3 Modified IDeC

In the following sections we consider certain modifi- 4 PDefect Quadrature (IQDeC)
cations of the IDeC procedure, which eventually will

enable rapid fixed point convergence to arbitrary (in-
cluding superconvergent) collocation solutions. The
common idea behind these modifications will be to use
some kind of splitting for the numerical solution of the t+h

respective neighboring problems, which are all of the App(z) =2+ D(r)dr, (17)
generic form !

For our first modification of classical IDeC, we re-
tain the splitting scheme (15) but replace the simple
quadrature rule (16) by

, whereD(t) = D;(t) for t € J; is the piecewise poly-
2(t) = f(t,2(1)) +d(t), =z(to) =2-  (13)  nomialinterpolant of degres m — 1 of d(t), defined
by Di(ti,j) = d(ti7j), j=1,...,m. IfthegridI'is

Here, we split the time-dependent vector field into its , _
given by (12) with arbitrary node8 < ¢; < ... <

componentsf (¢, z) andd(t). We denote the numeri-

cal flow of f(t, z) by @, ,, such that one step, ;) —  “m = b then

(t + h, zx+1) with step sizeh of the basic scheme ap- ti m

plied to (1) can be written ag,,, = ®;,(2). The Di(r)dr =hij» ajd(tiy)
numerical flowA,; of the other componeni(t) is tij—1 (=1

given by a suitable quadrature rule, "
v =2ij — Zij—1— hij Z ajef(tie, i)
Aup(z) ~ 2+ / d(7)dr. (14) =t
t holds withh; ; = t; ; — t; ;—1 and well-defined coef-
A method ¥, ;, for the numerical solution of (13) is ficientsa; , independent of. Here, the latter iden-
then given by a splitting scheme, i.d:, ;, is a com-  tity easily follows, if the functiond(t) is given by



N; | BEUL IQDeC1 IQDeC2 IQDeC3 IQDeC4 IQDeC5 Gauss
2 |4.831072 1.46107° 9.5310° 7.5310°6¢ 3.27107" 4.9910°® | 6.2510®
4 | 2441072 1.6410°6¢ 1.27107° 5.131077 1.2510°% 7.06107'0 | 9.301010
8 |1.221072 1.09107% 1.6410°%¢ 3.3410°% 4.30107'° 1.0610°'! | 1.4310 !
16 | 6.131072 3.6010~7 2.0810°7 2.14107° 1.4010~'' 1.63107'3 | 2.2310°13
i 0.99 3.15 2.91 3.88 4.71 6.14 6.07
8 0.99 0.59 2.95 3.94 4.87 6.06 6.02
16 1.00 1.60 2.98 3.97 4.94 6.02 6.00

Table 2: Modified IQDeC based on Gauss nodes= 3). Problem data as in Table 1.

d(t) = p'(t)—f(t,p(t)), wherep(t) = pi(t) fort € J;
is the piecewise interpolant of degreem of some
grid functionzr. The equations defining the numeri-
cal solutionpr of the neighboring problems (13) now

read
Pij —Pij—1
hi,;

= f(tij,pij) + di;

1 [t
dij = / D;(r)dr
’ hij Ji

i,j—1

m
2 — Zije1
- ]hij - Zaj,éf (tig,zip), (19)
7.7 Z:]_

which explains the term “IDeC with defect quadra-
ture” (IQDeC) for this variant of classical IDet.

For sufficiently smoothf (¢, z), convergence towards
the fixed pointz}. with convergence rat@(h) can be
shown for the IQDeC-iteratez«.ir”], which ensures the
validity of (11) for this IDeC variant, cf. [3, Proposi-
tion 1]. Note that this result holds farbitrary nodes
0<c <...<e¢p=1in(12). In particular, for

Radaulla nodes; we now have

z[z/} . y(tz,m) _ O(hmin(u+1,2m—1))7

,m

i.e., superconvergence at the poits,.

5 Modified IQDeC

Despite superconvergence, IQDeC is not completelyin (21) we have
satisfactory for the following reasons:

(i) The nodesc; are arbitrary with the restriction

(18)

(20)

(i) For stiff problems the implicit equations (2) and
(18) are usually solved by (some variant of)
Newton’s method. To minimize the computa-
tional effort in the involved linear algebra, it is
desirable to reuse the LU-decomposition of the
respective Jacobians as far as possible. But this
is only possible as long as the stepsize does not
change.

To find a remedy for both drawbacks, we note that it
is not necessary that the interpolation points for the
definition of D(¢) in (17) are identical to the points
ti; € I'. Instead, we now introduce a second grid
' = (t;;) by

tij=tio+ (tim —tio)¢;, j=1,....,m (21)

for arbitrary node® < ¢ < ... < &, < 1, and let
Dl(t) be defined b)Dsz,]) = d(li"j), j=1....,m.

The original gridl’, on which the basic scheme oper-
ates, is assumed to be piecewise equidistant, exactly
as in the case of the classical IDeC procedure.

For this new IDeC variant the fixed point is given
by Rrp*, where now*(t) is the piecewise collocation
polynomial corresponding to the collocation points
tij € I'. Again, convergence towards the fixed point
;- with convergence rat@ (h) can be shown for the it-

erateSZ[F”] by a straightforward adaptation of the proof
of [3, Proposition 1]. In particular, for Gauss nodgs

Z[V] . y(ti,m) _ O(hrnin(1/+1,2m))7 (22)

i,m

thatc,,, = 1 must hold. This excludes the usage i.e., superconvergence at the poitits,. This is illus-
of e.g. Gauss nodes.

trated by a numerical example in Table 2.

4For the idea to replace the pointwise evaluation of the defect by locally integrated values (19) see [2].



6 Defect Interpolation (IPDeC) p*(t) is the collocation solution corresponding to the

Let us consider a slight variant of the modified IQDeC grid (21).

procedure from Section 5. Namely, we do not inte- .

grate the interpolated defeEx(t) exactly for the defi- /-1 Schild’s Method

nition of A, , as in (17), but apply the quadrature rule In [6] an IDeC variant was analyzed which can be re-

(16) to D(t), formulated such as to fit into the context of the present
discussion. The basic methab, ;, is the implicit
Aip(2) = 2+ hD(t + h). (23)  trapezoidal rule, which can be written as
This IDeC variant can be characterized by the fact that Pip =y nn 0P, (27)
272 i)

now the basic scheme is not applied to the neighboring
problems (13) as is the case for classical IDeC, but to where¢* and ¢ are the forward and backward Euler
methods, respectively. Splitting for the neighboring
Z(t) = f(t,2(t)) + D(t), z(to) =20, (24)  problems (13) is realized as

where the defect(t) has been replaced by its inter- Uin =0, 000000 . (28)
polantD(t). Hence, we call this IDeC variant “IDeC 2 2
with defect interpolation” (IPDeC). In [6] it has been demonstrated that the usage of Gauss

The convergence behavior of the IPDeC procedure isnodes?; in (21) leads to a convergence r&#h?) for
very similar to that of the modified IQDeC procedure, this IDeC variant. Consequently,
cf. [3, Proposition 2].

2 — Yltim) = O(™CUT22m) - (29)
7 Splitting Defect Correction _ |
holds for the global errors of the |terate#’ at the
(ISDeC) .
pOINtSt; ,.
In this section we generalize the splitting approach
from Section 3 in two respects: 7.2 Geometric Integrators

(i) We consider other basic methofis, instead of In the context of geometric i_ntegration [4] it is com-
the backward Euler method, narﬁely methods of MonN to study ODEs of special structure. For exam-

higher order, and geometric integrators, which PI€: consider a system of two autonomous ODEs of
are suited for problems (1) with special struc- € Special forr
ture.
ure y = f(2), 2 =gy (30)
(i) We replace Lie-Trotter splitting (15) for the nu-

merical solution of the neighboring problems
(13) by other schemes, e.g. Byrang splitting

An explicit 2nd order methoa, j, for (30) is given by
the SHbrmer-Verletscheme

h
Ui =Apsn0®pol . (25) Zpyl = 59(%),
Y1 = e+ hf(z0), (31)
Throughout this section, the numerical flayy ;, for h
the componend(t) of (13) is defined as in Section 5, Zetl = gl t §g(yk+1)'
t+h Note that now the original IDeC idea cannot be ap-
App(z) =2+ D(r)dr, (26)  plied in a straightforward way, because the nonau-

! tonomous neighboring problems (13) are not of the

where D(t) is the piecewise polynomial of degree form (30). On the other hand, the splitting idea us-
< m — 1 which interpolatesi(¢) at the pointg; ;, cf. ing Strang splitting (25) and\;;, given by (26) is

(21). This choice ofA; ;, ensures that the fixed point evidently applicable. By means of numerical exper-
z;- of the IDeC iteration is given by = Rrp*, where  iments, it is demonstrated in [5] that this IDeC variant

A Hamiltonian systemy’ = —H,(p, q), ¢ = H,(p, q) is of this special form if the Hamiltonian functial (p, ¢) can be written as
H(p,q) =V(p) + Ulq).



Ny Strmer ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC5 Gauss
100 | 4971072 1.801072 1.4910~*% 2.93107% 4.38107% 3.84107'0 | 1.8210° %
200 | 1.241072 1.1210~* 2.4010°% 1.18107% 4.4610~'' 9.8410~'4 | 3.9310 '8
400| 3.1010~% 7.0310°% 3.7810°% 4.6610°'' 4.40107'* 2.43107'7 | 1.1210°2!
800 | 7.7610* 4.39107 5.91107'0 1.83107' 4.31107'7 5.96102' | 2.84102°
;88 2.00 4.00 5.96 7.95 9.94 11.93 8.85
400 2.00 4.00 5.99 7.99 9.99 11.98 11.78
800 2.00 4.00 6.00 8.00 10.00 12.00 11.95

Table 3: 1SDeC based on@tner-Verlet (31), Strang splitting (25), and Gauss nodes= 6) for the Kepler
problem [4, Section 1.2.2]. Global error and observed order are displayeg at 2.

again leads to a fixed point convergence @i?),
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