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1 Introduction

We deal with the numerical solution of singular boundary value problems
of the form

z′(t) =
M(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1], (1a)

B0z(0) + B1z(1) = β, (1b)

wherez is ann-dimensional real function,M is a smoothn × n matrix
andf is ann-dimensional smooth function on a suitable domain.B0 and
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B1 are constant matrices which are subject to certain restrictions for a well-
posed problem. The analytical properties of (1) have been discussed in [12].
We will recapitulate the most important results in§2, where we focus on
the most general boundary conditions which guarantee well-posedness of
the problem. Moreover, we will extend the results to problems wheref is
defined as a piecewise continuous function and derive a representation of
the solution which will be useful later on in our discussion.

Our interest in the numerical solution of boundary value problems with
a singularity of the first kind (1) is backed by numerous applications from
physics ([9], [15]), mechanics ([10]) or ecology ([19]). In this paper, we
treat the most general problem class, where the spectrum of the matrix
M(0) contains both eigenvalues with positive and negative real parts. This
case is of particular importance in physical applications, see for instance
[5], [7], [22], [25].

To compute the numerical solution of (1), we use collocation at an even
numberm of collocation points spaced equidistantly in the interior of every
collocation interval. Our decision to use collocation was motivated by its
advantageous convergence properties for (1), while in the presence of a
singularity other high order methods show order reductions and become
inefficient (see for example [14]). Here, we will show that the convergence
order of collocation methods with polynomials of degree≤ m is at least
equal to the stage orderm1. One of the reasons why we concentrate on
collocation at an even number of equidistant points is that in general, we
cannot expect to observe superconvergence (cf. [6]) when collocation is
applied to (1). At most, a convergence order ofO(| ln(h)|n0−1hm+1), for
some positive integern0, holds for a method of stage orderm, see [13].

This paper is intended to complete the analysis of a new a posteriori
error estimate for collocation methods applied to general boundary value
problems with a singularity of the first kind (1). This estimate is based on
the defect correction principle (see for example [21]) and was first intro-
duced in [4], where an analysis of the convergence properties of the error
estimate is given for regular problems. In [2], we could prove analogous
results for a restricted class of singular problems, where we assumed that
the eigenvalues of the coefficient matrixM(0) have no positive real parts.
In that case, a shooting argument can be used to analyze the collocation
solution. Convergence results from [13] finally yield a basis for the discus-
sion of collocation and the error estimate. In the case of a general spectrum
of M(0), which we consider here, this approach is not feasible. In order
to prove the analogous results, we have to derive a new representation of
the global error of collocation methods applied to (1), where we make use

1 This is an extension of results from [13] and [2] to the most general class of singular
problems (1).
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of estimates given in [24] for collocation applied to second order boundary
value problems with a singularity of the first kind. Our analysis of collo-
cation schemes is given in§3. With these prerequisites, we show in§4 that
the error of the error estimate as compared with the exact global error is
O(| ln(h)|n0−1hm+1) uniformly in t. This means that our error estimate is
asymptotically correct when no superconvergence is observed for the col-
location solution. This is the case for our choice of collocation points, and
moreover we cannot expect superconvergence for singular problems in gen-
eral anyway, see above.

The collocation method and error estimate analyzed in this paper were
also implemented in a MATLAB code designed especially to solve bound-
ary value problems with a singularity of the first kind. Our error estimate
yields a reliable basis for a mesh selection procedure which enables an ef-
ficient computation of the numerical solution [3]. A description of the code
and experimental evidence of its advantageous properties are given in [1].

1.1 Notation

Throughout the paper, the following notation is used. We denote byRn the
space of real vectors of dimensionn and use| · | to denote the maximum
norm inRn. For an interval[a, b], Cp[a, b] is the space of real vector-valued
functions or real matrices which arep times continuously differentiable on
[a, b] (we usually writeC[a, b] := C0[a, b]). For functionsy ∈ C[0, b],
where0 < b ≤ 1, we define the maximum norm,

‖y‖b := max
0≤t≤b

|y(t)|.

In the case whereb = 1 we omit the subscript to avoid confusion. For a
matrixA = (aij)n

i,j=1, A ∈ C[0, b], ‖A‖b is the induced norm,

‖A‖b = max
0≤t≤b

|A(t)| = max
0≤t≤b

max
1≤i≤n

n∑
j=1

|aij(t)|

 .

The subscript is again omitted forb = 1.
For the numerical analysis, we define meshes

∆ := (τ0, τ1, . . . , τN ), (2)

and

hi := τi+1− τi, Ji := [τi, τi+1], i = 0, . . . , N −1, τ0 = 0, τN = 1.
(3)
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For reasons of simplicity, we restrict the discussion to equidistant meshes,

hi = h, i = 0, . . . , N − 1.

However, the results also hold for nonuniform meshes which have a limited
variation in the stepsizes, cf. [13], [24]. On∆, we define corresponding
grid vectors

u∆ := (u0, . . . , uN ) ∈ R(N+1)n. (4)

The norm on the space of grid vectors is given by

‖u∆‖∆ := max
0≤k≤N

|uk|. (5)

For a continuous functiony ∈ C[0, 1], we denote byR∆ the pointwise
projection onto the space of grid vectors,

R∆(y) := (y(τ0), . . . , y(τN )). (6)

For collocation,m pointsti,j , j = 1, . . . ,m, are inserted in each subin-
terval Ji. We choose the same distribution of collocation points in every
subinterval, thus yielding the (fine) grid2

∆m = {ti,j = τi + ρjh, i = 0, . . . , N − 1, j = 1, . . . ,m}, (7)

with
0 < ρ1 < ρ2 · · · < ρm ≤ 1. (8)

For reasons of convenience, we defineρm+1 := 1. We restrict ourselves
to grids whereρ1 > 0 to avoid a special treatment of the singular point
t = 0. For the analysis of the stability of collocation methods in§3, we
allow ρm = 1. In the discussion of the error estimate, we consider only
equidistant collocation points, where

ρj :=
j

m + 1
, j = 1, . . . ,m. (9)

For a grid∆m, u∆m , ‖ · ‖∆m andR∆m are defined analogously to (4)–(6).

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN| {z }
h

Fig. 1. The computational grid

2 For convenience, we denoteτi by ti,0 ≡ ti−1,m+1, i = 1, . . . , N .
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2 Analytical results

First, we discuss the analytical properties of linear boundary value prob-
lems with a singularity of the first kind,

z′(t) =
M(t)

t
z(t) + f(t), t ∈ (0, 1], (10a)

B0z(0) + B1z(1) = β. (10b)

Throughout, we assumeM ∈ C1[0, 1]. Consequently, we can rewriteM(t)
and obtain

M(t) = M(0) + tC(t) (11)

with a continuous matrixC(t).
It was shown in [12] that the form of the boundary conditions (10b)

which guarantee that (10) has a unique, continuous solution depends on
the spectral properties of the coefficient matrixM(0). To avoid fundamen-
tal modes of (10a) which have the formcos(σ ln(t)) + i sin(σ ln(t)), we
assume that zero is the only eigenvalue ofM(0) on the imaginary axis.

Now, let S denote a projection onto the invariant subspace which is
associated with eigenvalues ofM(0) which have positive real parts, andR
a projection onto the kernel ofM(0). Finally, define

P := S + R, Q := I − P, (12)

whereI denotes the identity matrix inRn. Later on in our discussion, we
will also useS̃, R̃, P̃ andQ̃ for matrices consisting of maximal sets of
linearly independent columns of the respective projections.

In [12] it was shown that the boundary value problem (10) is well-posed
iff the boundary conditions (10b) can equivalently be written as

(Q + R)z(0) = Rz(0) = γ ∈ ker(M(0)), (13a)

Sz(1) = Sη, η ∈ Rn. (13b)

Remark 2.1Note that (13a) could also be written equivalently as

Qz(0) = 0, B̃0Rz(0) + B̃1Rz(1) = β̃, (14)

with suitable matrices̃B0, B̃1 ∈ Rr×n andβ̃ ∈ Rr. This does not change
our arguments, however, so for reasons of simplicity we use (13a).

It follows from the variation of constant formula (see for example [8])
that, for any0 < b ≤ 1, every solutionz of (10a) satisfies the integral
equation

z(t) =
(

t

b

)M(0)

z(b) + tM(0)

∫ t

b
τ−M(0) (C(τ)z(τ) + f(τ)) dτ. (15)
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For sufficiently smallb, (15) can be shown to have a unique continuous so-
lution on[0, b], and classical theory yields the existence of a unique solution
of (10) on[0, 1].

For the analysis of the nonlinear case, i. e., whenf = f(t, z) in (10),
we make the following assumptions:

1. Equation (1) has an isolated solutionz ∈ C[0, 1]∩C1(0, 1]. This means
that

u′(t) =
M(t)

t
u(t) + A(t)u(t), t ∈ (0, 1],

B0u(0) + B1u(1) = 0,

where

A(t) := D2f(t, z(t)) :=
∂f(t, z)

∂z
(t, z(t)),

has only the trivial solution.
With the solutionz and aρ > 0 we associate the spheres

Sρ(z(t)) := {y ∈ Rn : |z(t)− y| ≤ ρ}

and the tube

Tρ := {(t, y) : t ∈ [0, 1], y ∈ Sρ(z(t))}.

2. f(t, z) is continuously differentiable with respect toz, and ∂f(t,z)
∂z is

continuous onTρ.

For this situation, the following smoothness properties hold, for a proof
see [12]:

Theorem 2.1Let f bep times continuously differentiable onTρ andM ∈
Cp+1[0, 1]. Then

1. z ∈ Cp+1(0, 1].
2. If all the eigenvalues ofM(0) have nonpositive real parts, thenz ∈

Cp+1[0, 1].
3. Letσ+ denote the smallest of the positive real parts of the eigenvalues of

M(0) andn0 the dimension of the largest Jordan box associated with
the eigenvalue zero in the Jordan canonical form ofM(0). Then the
following statements hold:

– For p < σ+ < p+1, |z(p+1)(t)| ≤ const tσ+−p−1(| ln(t)|n0−1+1).
– For σ+ = p + 1, |z(p+1)(t)| ≤ const (| ln(t)|n0 + 1).
– For σ+ > p + 1, z ∈ Cp+1[0, 1].

Motivated by the last result, we will assume throughout this paper that
σ+ > 1 to ensure thatz ∈ C1[0, 1]. Note that if this assumption is not
satisfied, we can transform the equation (1a) by lettingt → tλ, 1 > λ > 0,
whenceσ+ → σ+/λ. Thus, the assumptionσ+ > 1 imposes no restriction
of generality.
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2.1 Extension to piecewise problems

Now, we extend the analytical results from [12] to the case of piecewise
problems (we restrict ourselves to the linear case and write the boundary
conditions in their form (13a) and (13b))

y′i(t) =
M(t)

t
yi(t) + fi(t), t ∈ Ji, i = 0, . . . , N − 1, (16a)

yi(τi+1) = yi+1(τi+1), i = 0, . . . , N − 2, (16b)

(Q + R)y0(0) = γ =: R̃α1, (16c)

SyN−1(1) = Sη =: S̃α2, (16d)

wheref(t) := fi(t), t ∈ Ji, i = 0, . . . , N − 1 is a piecewise continuous
function,fi ∈ C(Ji). We will show the existence of a continuous solution
y(t) = yi(t), t ∈ Ji, i = 0, . . . , N − 1, discuss its smoothness and derive
estimates which are useful for the analysis of the global error of collocation
methods, see§3.2.

We use a contraction argument to show the existence of a unique solu-
tion of (16). To this end, we define a mappingR : C[0, 1] → C[0, 1] by
requiring thaty = R(x) is the solution of the linear (piecewise) boundary
value problem (see (11))

y′i(t) =
M(0)

t
yi(t) + C(t)x(t) + fi(t), t ∈ Ji, i = 0, . . . , N − 1,(17a)

yi(τi+1) = yi+1(τi+1), i = 0, . . . , N − 2, (17b)

(Q + R)y0(0) = Ry(0) = γ, (17c)

SyN−1(1) = Sη. (17d)

Similarly as in (15) (see also [18]), and considering that (see (12))

I = S + R + Q,
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we show that, for a suitablec ∈ Rn, y can be written as

y(t) = R(x) = tM(0)c + tM(0)
i+1∑

l=N−1

∫ τl

τl+1

τ−M(0) (C(τ)x(τ) + fl(τ)) dτ

+ tM(0)

∫ t

τi+1

τ−M(0) (C(τ)x(τ) + fi(τ)) dτ

= tM(0)Sc + tM(0)R

(
c−

∫ 1

0
τ−M(0) (C(τ)x(τ) + f(τ)) dτ

)
+ tM(0)Q

(
c−

∫ 1

0
τ−M(0) (C(τ)x(τ) + f(τ)) dτ

)
+ t

∫ 1

0
(Q + R)s−M(0) (C(st)x(st) + f(st)) ds

+ tM(0)

∫ t

1
Sτ−M(0) (C(τ)x(τ) + f(τ)) dτ, t ∈ Ji. (18)

The vectorc is then determined from the boundary conditions (17c) and
(17d). We conclude that

Q

(
c−

∫ 1

0
τ−M(0) (C(τ)x(τ) + f(τ)) dτ

)
= 0, (19)

and moreover
Sy(1) = Sc = Sη = S̃α2, (20)

and

Ry(0) = R

(
c−

∫ 1

0
τ−M(0) (C(τ)x(τ) + f(τ)) dτ

)
= R̃α1, (21)

since
tM(0)R = R, t ∈ [0, 1],

see for example [17]. Thus, the constantc is uniquely determined from (19),
(20) and (21), and we conclude

y(t) = tM(0)(S̃α2 + R̃α1)

+ t

∫ 1

0
(Q + R)s−M(0) (C(st)x(st) + f(st)) ds

+ tM(0)

∫ t

1
Sτ−M(0) (C(τ)x(τ) + f(τ)) dτ. (22)

We may now assumex ∈ C[b, 1], 0 < b < 1, to be a known, fixed function
(we may later justify this assumption, since classical theory implies that a
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solution of (16a) with suitable boundary conditions exists on[b, 1]). Con-
sequently, it follows from [17, Lemma 2.2] and [17, Lemma 2.5] that the
right-hand side of (22) is a contraction fort ∈ [0, b] for sufficiently small
b > 0, that is

‖R(x1)−R(x2)‖b ≤ L ‖x1 − x2‖b , L < 1. (23)

Thus, there exists a unique, continuous solutiony = R(y) of (17) which
satisfies the estimate

‖R(y)‖b − ‖R(0)‖b ≤ ‖R(y)−R(0)‖b ≤ L ‖y‖b ⇒
‖y‖b ≤ const (|γ|+ |η|+ ‖f‖) . (24)

If we assume thatσ+ > 1 (cf. Theorem 2.1), we can substitute (22) into
(17a) and conclude thaty′ is piecewise continuous on [0,1], and moreover∥∥y′∥∥

b
≤ const (|γ|+ |η|+ ‖f‖). (25)

Note that we can use classical theory to extend the results to the whole
interval[0, 1].

Finally, we discuss the smoothness of higher derivatives of the solu-
tion y. To this end, we consider the representation ofy′ resulting from the
substitution of (22) into (17a). Clearly,

tM(0)−I S̃α2 ∈ Cp[0, 1] if σ+ > p + 1, (26)

lim
t→0

tM(0)−I S̃α2 = 0. (27)

Now, for t ∈ Ji consider

ζ(t) :=
∫ 1

0
(Q + R)s−M(0) (C(st)x(st) + f(st)) ds

=
i−1∑
l=0

∫ τl+1/t

τl/t
(Q + R)s−M(0) (C(st)x(st) + fl(st)) ds

+
∫ 1

τi/t
(Q + R)s−M(0) (C(st)x(st) + fi(st)) ds. (28)

It is straightforward to compute

ζ ′(t) = (Q + R)
∫ 1

0
sI−M(0)

(
C ′(st)x(st) + C(st)x′(st) + f ′(st)

)
ds

− (Q + R)
1
t

i−1∑
l=0

((τl+1

t

)I−M(0)
(C(τl+1)x(τl+1) + fl(τl+1))

−
(τl

t

)I−M(0)
(C(τl)x(τl) + fl(τl))

)
+ (Q + R)

1
t

(τi

t

)I−M(0)
(C(τi)x(τi) + fi(τi)) . (29)
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Consequently, forM ∈ C2[0, 1], x, fi ∈ C1(Ji), ζ ′(t) can be estimated as

‖ζ ′‖τ1 ≤ const
(
|η|+ |γ|+ ‖f‖+ ‖f ′‖

)
, (30)

‖ζ ′‖τi+1 ≤ const
(
(1 + 1/h)(|η|+ |γ|+ ‖f‖) + ‖f ′‖

)
, i ≥ 1,(31)

since in the latter case we can use1/t ≤ 1/h for t ≥ τ1 and estimate (30)
on the first interval. Note that the1/h terms in (31) are present only because
of the jump discontinuities inf(t). For smoothf , estimates analogous to
(30) hold on the whole interval.

Finally, we analyze the last term ofy(t)/t in the representation (22),
defining

ϕ(t) := tM(0)−I

∫ t

1
Sτ−M(0) (C(τ)x(τ) + f(τ)) dτ

similarly as in [17, Lemma 2.6]. It turns out that estimates analogous to
(30) and (31) hold forϕ′. We will not repeat the calculations here.

The considerations up to this point put us in a position to estimatey′′.
For higher derivatives ofy, we proceed analogously, where we require suf-
ficient (piecewise) smoothness ofM, xi andfi and we assume thatσ+ is
sufficiently large (note that the smoothness ofx(t) = y(t) is concluded
successively in every step from the results of the last step).

Altogether we have proven the following theorem:

Theorem 2.2Assumefi ∈ Cp(Ji), M ∈ Cp+1[0, 1] and σ+ > p + 1.
Then there exists a unique, continuous solutiony(t) = yi(t), t ∈ Ji, i =
0, . . . , N − 1, of (16). Moreover,yi ∈ Cp+1(Ji) holds andy satisfies the
estimates

‖y‖ ≤ const (|γ|+ |η|+ ‖f‖), (32)∥∥∥y(p+1)
∥∥∥ ≤ const

p∑
k=0

hk−p
(
|γ|+ |η|+

∥∥∥f (k)
∥∥∥) . (33)

3 Collocation methods

In this section, we analyze collocation with continuous, piecewise poly-
nomial functions of degree≤ m. First, in §3.1 we give existence results
and estimates for linear initial and terminal value problems. We proceed
by generalyzing these results to systems of linear and nonlinear boundary
value problems. The convergence analysis is postponed to§3.2, where we
will derive a new representation of the global error of collocation for (1).
Motivated by the discussion in§2, we restrict ourselves to boundary condi-
tions of the form (13).
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Let us denote byBm the Banach space of continuous, piecewise poly-
nomial functionsq ∈ Pm of degree≤ m, m ∈ N (m is called thestage
order of the method), equipped with the norm‖ · ‖. As an approximation
for the exact solutionz of (1), we define an element ofBm which satis-
fies the differential equation (1a) at a finite number of points and which is
subject to the same boundary conditions. Thus, we are seeking a function
p(t) = pi(t), t ∈ Ji, i = 0, . . . , N − 1, in Bm which satisfies

p′(ti,j) =
M(ti,j)

ti,j
p(ti,j) + f(ti,j , p(ti,j)),

i = 0, . . . , N − 1, j = 1, . . . ,m, (34a)

(Q + R)p(0) = γ = R̃α1, (34b)

Sp(1) = Sη = S̃α2. (34c)

We consider collocation on general grids∆m (see (7)), subject to the re-
strictionρ1 > 0.

3.1 Existence and stability results

For the discussion of the existence, uniqueness and stability of the solution
of collocation schemes, we consider general collocation grids where we
permitρm = 1, see (8). The first result we give was already employed in
[2] for the analysis of collocation schemes. The result holds for problems
where the matrixM(0) has no eigenvalues with positive real parts. In that
case, problem (1), and consequently (34), can equivalently be written as
an initial value problem. We will show later that general boundary value
problems can be rewritten in a way such that the following lemma can still
be used. The proof of this result is given in [2, Theorem 4.2].

Lemma 3.1Assume that all eigenvalues ofM(0) have nonpositive real
parts. Forµ, α ∈ {0, 1} and arbitrary constantsci,j , there exists a unique
p ∈ Bm which satisfies

p′(ti,j) =
M(0)
ti,j

p(ti,j) +
M(0)µ

tαi,j
ci,j ,

i = 0, . . . , N − 1, j = 1, . . . ,m, (35a)

p(0) = γ = R̃α1. (35b)

Furthermore,

‖p‖τi+1 ≤ const
(
|γ|+ Ciτ

1−α
i+1 | ln(h)|(α(n0−µ))+

)
, i = 0, . . . , N − 1,

(36)
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wheren0 is the dimension of the largest Jordan block ofM(0) correspond-
ing to the eigenvalue0,

(x)+ :=
{

x, x ≥ 0,
0, x < 0,

and
Ci := max

l = 0, . . . , i
j = 1, . . . , m

|cl,j |.

The next lemma is concerned with terminal value problems, where all
the eigenvalues ofM(0) have positive real parts.

Lemma 3.2Assume that all eigenvalues ofM(0) have positive real parts.
For α ∈ {0, 1} and arbitrary constantsci,j , there exists a uniquep ∈ Bm

which, for any0 < b ≤ 1, satisfies

p′(ti,j) =
M(0)
ti,j

p(ti,j) +
1

tαi,j
ci,j ,

i = 0, . . . , N − 1, j = 1, . . . ,m, (37a)

p(b) = η. (37b)

Furthermore,

‖p‖τi+1 ≤ const

(
|η|+

i∑
l=N

(
τi+1

τl+1

)ν

hτ−α
l+1CN−1

+
i∑

l=N

(
τi+1

τl+1

)ν

hτ
σ+−1
l |η|

)

≤

{
const

(
|η|+ τi+1

∣∣∣( τi+1

b

)ν−1 − 1
∣∣∣CN−1

)
, for α = 0,

const (|η|+ CN−1) , for α = 1,

≤ const
(
|η|+ τ1−α

i+1 CN−1

)
i = 0, . . . , N − 1, (38)

whereσ+ is the same as in Theorem 2.1. Since we have assumed thatσ+ >
1, we may chooseν > 1.

Proof The proof follows from results given in [24]. In the latter paper, sec-
ond order problems with a singularity of the first kind are discussed. How-
ever, the collocation equations for these problems can be transformed to an
equivalent first order formulation. The results from [24, Lemma 3.4] which
we use here are originally derived for the first order formulation and can
thus be employed for our purpose. Note that from a close inspection of the
arguments in [24, pp. 1092–1094] we can conclude that actually it is possi-
ble to useν = σ+. For this case, the estimate from [24, Lemma 3.4] can be
improved to (38) if [24, Lemma 3.2] is appropriately used.ut
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Next, we show that the linear collocation scheme

p′(ti,j) =
M(0)
ti,j

p(ti,j) + C(ti,j)p(ti,j) + f(ti,j),

i = 0, . . . , N − 1, j = 1, . . . ,m, (39a)

(Q + R)p(0) = γ = R̃α1, (39b)

Sp(1) = Sη = S̃α2 (39c)

has a unique solution and derive estimates for this solution.
As in §2, we rewrite (39) as a fixed point problem. Thus, letp = K(q)

be defined forq ∈ Bm as the solution of

p′(ti,j) =
M(0)
ti,j

p(ti,j) + C(ti,j)q(ti,j) + f(ti,j),

i = 0, . . . , N − 1, j = 1, . . . ,m, (40a)

(Q + R)p(0) = γ = R̃α1, (40b)

Sp(1) = Sη = S̃α2. (40c)

Since (40) defines a collocation problem with constant coefficient matrix,
the boundary value problem can be decoupled in the following sense: Let us
denote byJ the Jordan canonical form ofM(0), and byE the associated
matrix of generalized eigenvectors ofM(0). The transformationp(t) →
Ep(t) yields

p′(ti,j) =
J

ti,j
p(ti,j) + D(ti,j)q(ti,j) + g(ti,j),

i = 0, . . . , N − 1, j = 1, . . . ,m, (41a)

V (L)p(0) = E−1R̃α1, (41b)

V (R)p(1) = E−1S̃α2, (41c)

whereD(ti,j) := E−1C(ti,j), g(ti,j) := E−1f(ti,j), and

J =
(

J (L) 0
0 J (R)

)
, V (L) :=

(
I(L) 0
0 0

)
, V (R) :=

(
0 0
0 I(R)

)
.

Here,J (L) is the Jordan block of dimensionrank(Q)+rank(R) associated
with the eigenvalues with nonpositive real parts,J (R) is associated with the
eigenvalues with positive real parts and has dimensionrank(S), andI(L),
I(R) are unit matrices of dimensionsrank(Q) + rank(R) and rank(S),
respectively, whereQ, R andS denote the projections from (12). Note that
the lastrank(S) components ofE−1R̃α1 and the firstrank(Q)+ rank(R)
components ofE−1S̃α2 are zero.

Thus, we may consider separately an initial value problem, where the
associated coefficient matrix has eigenvalues with nonpositive real parts
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only, and a terminal value problem where the coefficient matrix has only
eigenvalues with positive real parts. We use a contraction argument to show
that (41) has a unique solution:v := K(q1)−K(q2) is implicitly defined as
the solution of the collocation problem

v′(ti,j) =
J

ti,j
v(ti,j) + D(ti,j)(q1(ti,j)− q2(ti,j)),

i = 0, . . . , N − 1, j = 1, . . . ,m,

V (L)v(0) + V (R)v(1) = 0.

Now, Lemma 3.1 implies that

‖V (L)v‖b(L) ≤ const b(L)‖D‖b(L)‖q1 − q2‖b(L) = L(L)‖q1 − q2‖b(L) ,

andL(L) < 1 if 0 < b(L) ≤ 1 is sufficiently small, since‖D‖ < ∞. For
the terminal value problem, we use classical theory to show the existence
of a unique collocation solution on the interval[b(R), 1], and for sufficiently
smallb(R), Lemma 3.2 shows that

‖V (R)v‖b(R) ≤ const b(R)‖D‖b(R)‖q1 − q2‖b(R) = L(R)‖q1 − q2‖b(R) ,

andL(R) < 1 for 0 < b(R) ≤ 1 sufficiently small. Altogether we have
proven that

‖K(q1)−K(q2)‖b ≤ L‖q1 − q2‖b, L < 1,

whereb := min
{
b(L), b(R)

}
, andK is a contraction on[0, b].

We can now use the same arguments as in the proof of (24) to show that

‖p‖ ≤ const (|γ|+ |η|+ ‖f‖) . (42)

Using this last estimate, and considering thatτi+1 ≤ 1, we can even con-
clude that

‖p‖τi+1 ≤ const (|γ|+ |η|+ τi+1‖f‖) . (43)

We will postpone the discussion of the higher derivatives ofp to §3.2.

Remark 3.1With the same arguments we can also prove that

p′(ti,j) =
M(ti,j)

ti,j
p(ti,j) +

M(0)
ti,j

f(ti,j),

i = 0, . . . , N − 1, j = 1, . . . ,m, (44a)

(Q + R)p(0) = γ = R̃α1, (44b)

Sp(1) = Sη = S̃α2. (44c)

has a unique solutionp which satisfies

‖p‖ ≤ const (|γ|+ |η|+ | ln(h)|n0−1‖f‖). (45)

This estimate will be important in the analysis of our error estimate in§4.
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To show that the nonlinear scheme (34) has a (locally) unique solution,
we can proceed analogously as in [2, Theorem 4.4] using the estimate (42).
We do not repeat the whole line of argument here, but merely point out
that the only modifications are related to the different form of the boundary
conditions (13) we consider for the general case here. [2, (4.23)] now reads3

z(t)− pref(t) = S̃O(hm) + tO(hm).

Due to (27), the estimate [2, (4.24)] holds in this case as well. We may also
conclude that under the same assumptions, Newton’s method converges
quadratically for the computation ofp.

The convergence properties of the (locally) unique collocation solution
p will be discussed in§3.2, where we will derive a representation for the
global error ofp.

3.2 Representation of the global error

Here, we derive a representation for the global error of the collocation so-
lution p at the grid pointsti,j , i = 0, . . . , N − 1, j = 1, . . . ,m + 1. This
representation of the error will be useful in the analysis of our error estimate
in §4, so for technical reasons we restrict ourselves to grids whereρm < 1
(as for example in (9)). We make the ansatz

p(ti,j) = z(ti,j) + e(ti,j)hm + r(ti,j),
i = 0, . . . , N − 1, j = 1, . . . ,m + 1, (46)

wherez is the exact solution of (1), ande ∈ C[0, 1], r ∈ Bm are to be
determined. We would like to stress that (46) does not yield anasymptot-
ical error expansionin the classical sense (cf. [20]), since it will turn out
that e = O(hm), r = O(hm). However, the form we choose in the rep-
resentation (46) will be convenient in the analysis of our error estimate in
§4.

In order to derive relations fore andr, we rewrite the collocation equa-
tions (34a): Let

Ω(t) :=
m+1∏
k=1

(t− ρk), (47)

3 Note that if we had used (14) instead of (13a), we would obtain

z(t)− pref(t) = S̃O(hm) + R̃O(hm) + tO(hm).
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whereρk are defined in (8) (recall thatρm+1 := 1). The Lagrange polyno-
mials associated with the abscissaeρ1, . . . , ρm+1 are defined as

Lk(t) =
Ω(t)

Ω′(ρk)(t− ρk)
, k = 1, . . . ,m + 1. (48)

Using
wj,k := L′k(ρj), j, k = 1, . . . ,m + 1,

we can now write

p′i(ti,j) =
1
h

m+1∑
k=1

wj,kpi(ti,k), (49)

sincepi is a polynomial of degree≤ m.
As an auxiliary consideration, observe that

1
h

m+1∑
k=1

(ti,k − ti,j)l

l!
wj,k = q′l(ti,j),

for i = 0, . . . , N−1, j = 1, . . . ,m, l = 0, . . . ,m+1, whereql(t), t ∈ Ji

are the polynomials of degree≤ m interpolating the functions

gl(t) :=
(t− ti,j)l

l!
, t ∈ Ji, l = 0, . . . ,m + 1,

at the pointsti,k, k = 1, . . . ,m+1, respectively. Clearly,ql(t) = gl(t), t ∈
Ji holds forl = 0, . . . ,m. Consequently,

q′l(ti,j) = g′l(ti,j) =
{

1, l = 1,
0, l = 0, 2, 3, . . . ,m.

(50)

On noting thatg′m+1(ti,j) = 0, g
(m+1)
m+1 (ξ) = 1, ξ ∈ Ji, andg

(m+2)
m+1 (t) =

0, t ∈ Ji, we conclude forl = m + 1 that

q′m+1(ti,j) = g′m+1(ti,j)−
hm+1

(m + 1)!
d

dt

(
Ω

(
t− τi

h

)) ∣∣∣∣∣
t=ti,j

g
(m+1)
m+1 (ξ)

= − 1
(m + 1)!

Ω′(ρj)hm, (51)

see [11]. Now, we derive defining relations for the quantities from (46).
Formal Taylor expansion aboutti,j yields

z(ti,k) =
m+1∑
l=0

(ti,k − ti,j)l

l!
z(l)(ti,j) + O(hm+2)‖z(m+2)‖, (52)

e(ti,k) = e(ti,j) + e′(ti,j)(ti,k − ti,j) + O(h2)‖e′′‖, (53)
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where‖z(m+2)‖ = O(1) for sufficiently smooth data in (1), see Theo-
rem 2.1.

Substitution of (46) into (34a) in the form using the equality (49) and
taking into account the Taylor expansions (52) and (53) we obtain (recall
thatD2f(t, z) denotes the partial derivative w. r. t. the second argument of
a functionf )

m+1∑
l=0

z(l)(ti,j)
1
h

m+1∑
k=1

(ti,k − ti,j)l

l!
wj,k

+
1∑

l=0

e(l)(ti,j)
1
h

m+1∑
k=1

(ti,k − ti,j)l

l!
wj,kh

m

+
1
h

m+1∑
k=1

wj,kr(ti,k) + (1 + ‖e′′‖)O(hm+1)

= z′(ti,j) + e′(ti,j)hm + r′(ti,j)

− 1
(m + 1)!

Ω′(ρj)z(m+1)(ti,j)hm + (1 + ‖e′′‖)O(hm+1)

=
M(ti,j)

ti,j
(z(ti,j) + e(ti,j)hm + r(ti,j)) + f(ti,j , p(ti,j))

=
M(ti,j)

ti,j
(z(ti,j) + e(ti,j)hm + r(ti,j)) + f(ti,j , z(ti,j))

+
∫ 1

0
D2f(ti,j , z(ti,j) + e(ti,j)hm + τr(ti,j)) dτr(ti,j)

+D2f(ti,j , z(ti,j))e(ti,j)hm + O(h2m). (54)

Since (54) must hold for allh ≤ h0 with suitableh0 > 0, we can use the
same line of reasoning as in the derivation of classical asymptotical error
expansions (see for example [20]) to collect terms in the following way:
taking into account the terms vanishing becausez is the exact solution of
(1), the terms with factorshm yield for e the relations (clearly, bothe and
r satisfy homogeneous boundary conditions)

e′(ti,j) =
M̂(ti,j)

ti,j
e(ti,j) +

1
(m + 1)!

Ω′(ρj)z(m+1)(τi),

i = 0, . . . , N − 1, j = 1, . . . ,m, (55a)

(Q + R)e(0) = 0, (55b)

Se(1) = 0, (55c)

where
M̂(t) := M(t) + tD2f(t, z(t)),
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and we note that

z(m+1)(ti,j)hm = z(m+1)(τi)hm + O(hm+1)

for sufficiently smoothz. Finally, we collect all remaining terms in relations
for r as

r′(ti,j) =
M(ti,j)

ti,j
r(ti,j) + (1 + ‖e′′‖)O(hm+1)

+
∫ 1

0
D2f(ti,j , z(ti,j) + e(ti,j)hm + τr(ti,j)) dτr(ti,j),

i = 0, . . . , N − 1, j = 1, . . . ,m, (56a)

(Q + R)r(0) = 0, (56b)

Sr(1) = 0. (56c)

Now, in order to find a functione ∈ C[0, 1] which satisfies (55), we rewrite
the defining equations in the form of a differential equation fort ∈ (0, 1],

e′(t) =
M̂(t)

t
e(t) +

1
(m + 1)!

g(t), t ∈ (0, 1], (57a)

(Q + R)e(0) = 0, (57b)

Se(1) = 0, (57c)

whereg = gi(t), t ∈ Ji, i = 0, . . . , N − 1, is a suitable, piecewise
polynomial function which satisfiesgi(ti,j) = Ω′(ρj)z(m+1)(τi), i =
0, . . . , N − 1, j = 1, . . . ,m. For example, we could choose the unique
interpolantg ∈ Bm−1, or

gi(t) = z(m+1)(τi)Ω′
(

t− τi

h

)
, t ∈ Ji. (58)

From Theorem 2.2 we conclude that (57) has a unique solutione ∈ C[0, 1],
which is piecewise smooth, and for sufficiently smoothM̂

‖e(p+1)‖ ≤ const
p∑

k=0

hk−p
∥∥∥g(k)

∥∥∥ = O(h−p), p = 0, . . . ,m− 1 (59)

due to‖g(k)
i ‖ = O(h−k), k = 0, . . . ,m − 1. Finally note that we can use

the representation (22) to show that forσ+ > 1 (see Theorem 2.1 and the
subsequent remark concerning this assumption)∣∣∣∣M(0)

t
e(t)

∣∣∣∣ ≤ ∣∣∣∣M(0)
∫ 1

0
(Q + R)s−M(0) (C(st)e(st) + f(st)) ds

∣∣∣∣
+
∣∣∣∣M(0)tM(0)−I

∫ t

1
Sτ−M(0) (C(τ)e(τ) + f(τ)) dτ

∣∣∣∣
≤ const .
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Finally, we discuss the solution of (56). If we assume thatD2f is
bounded in[0, 1] × Rn, (56) can be analyzed using the same methods
as for general linear collocation problems in§3.1. We can conclude that
a unique solutionr ∈ Bm exists andr can be estimated as (note that
‖e′′‖hm+1 = O(hm) from (59))

‖r‖τi+1 ≤ τi+1O(hm), i = 0, . . . , N − 1, (60)

see (43). Substitution of (60) into (56a) additionally yields

‖r′‖ ≤ O(hm), (61)

on noting thatr′ is a piecewise polynomial interpolant ofr′(ti,j) of degree
≤ m− 1 (cf. [11]). From a well known result for polynomial interpolation,
it follows finally that

‖r(k+1)‖ ≤ O(hm−k), k = 1, . . . ,m− 1. (62)

Using the results we have proven for the functionse andr, we can now
formulate the following theorem.

Theorem 3.1Assume thatM ∈ Cm+2[0, 1], f is m+1 times continuously
differentiable in[0, 1] × Rn with D2f bounded in that domain andσ+ >
m + 2. Then the collocation scheme(34) has a unique solutionp ∈ Bm in
a neighborhood of an isolated solutionz ∈ Cm+2[0, 1] of (1). This solution
can be computed using Newton’s method, which converges quadratically.
Moreover,R∆m(p) can be represented in the form(46), with a function
e ∈ C[0, 1] which is piecewise smooth and satisfies∣∣∣∣M(0)

t
e(t)

∣∣∣∣ ≤ const , t ∈ [0, 1] (63)∥∥∥e(k+1)
∥∥∥ = O(h−k), k = 0, . . . ,m− 1. (64)

Similarly, the functionr ∈ Bm satisfies

‖r‖τi+1 ≤ τi+1O(hm), i = 0, . . . , N − 1, (65)

‖r(k+1)‖ = O(hm−k), k = 0, . . . ,m− 1. (66)

Altogether, we conclude that

‖p− z‖ = O(hm), (67)∣∣∣∣M(0)
t

(p(t)− z(t))
∣∣∣∣ = O(hm), t ∈ [0, 1], (68)∥∥∥p(k+1) − z(k+1)

∥∥∥ = O(hm−k), k = 0, . . . ,m− 1, (69)∣∣∣∣p′(t)− M(t)
t

p(t)− f(t, p(t))
∣∣∣∣ = O(hm), t ∈ [0, 1]. (70)
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Proof The estimate (70) is a simple consequence of (69) fork = 0, (68)
and (67). ut

Note that the conditionσ+ > m+2 does not impose a restriction of general-
ity, see also the remark following Theorem 2.1. Furthermore, ifσ+ ≤ m+2
we cannot in general guarantee thatz ∈ Cm+2 (Theorem 2.1), and thus we
cannot expect to observe the desired convergence orders in this case any-
way and the restrictionσ+ > m + 2 is thus natural in this context.

4 The error estimate

In this section, we use the results of Theorem 3.1 to show that an error esti-
mate, originally introduced in [4], is asymptotically correct for collocation
with an even number of equidistant collocation points. Similar results were
shown for regular problems in [4], and in [2] for problems with a singularity
of the first kind, where the spectrum ofM(0) was restricted to eigenvalues
with non-positive real parts. The analysis of the latter case is analogous to
the situation we consider here, if we use the results derived for collocation
methods from Theorem 3.1, where no restriction on the spectrum ofM(0)
was imposed. Accordingly, we only give a brief description of the error es-
timate and refer the reader to [2] for the technical details of the proof. It is
only necessary to replace the estimates for collocation methods given in [2]
with the results from Theorem 3.1, and use the estimate (45).

For our error estimate, the numerical solutionp obtained by collocation
is used to define a ‘neighboring problem’ to (1). The original and neigh-
boring problems are solved by the backward Euler method at the points
ti,j , i = 0, . . . , N − 1, j = 1, . . . ,m + 1. This yields the grid vectors
ξi,j andπi,j as the solutions of the following schemes, subject to boundary
conditions (13),

ξi,j − ξi,j−1

ti,j − ti,j−1
=

M(ti,j)
ti,j

ξi,j + f(ti,j , ξi,j), and (71a)

πi,j − πi,j−1

ti,j − ti,j−1
=

M(ti,j)
ti,j

πi,j + f(ti,j , πi,j) + d̄i,j , (71b)

whered̄i,j is a defect term defined by

d̄i,j :=
p(ti,j)− p(ti,j−1)

ti,j − ti,j−1
−

m+1∑
k=1

αj,k

(
M(ti,k)

ti,k
p(ti,k) + f(ti,k, p(ti,k))

)
.

(72)
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Here, the coefficientsαj,k are chosen in such a way that the quadrature
rules given by

1
ti,j − ti,j−1

∫ ti,j

ti,j−1

ϕ(τ) dτ ≈
m+1∑
k=1

αj,kϕ(ti,k)

have precisionm + 1.
In the next theorem, we state the result that the differenceξ∆m − π∆m

is an asymptotically correct estimate for the global error of the collocation
solution,R∆m(z)−R∆m(p).

Theorem 4.1Assume that the singular boundary value problem(1) has an
isolated (sufficiently smooth4) solutionz and satisfies the assumptions of
Theorem 3.1. Then, provided thath is sufficiently small, the following esti-
mate holds:

‖(R∆m(z)−R∆m(p))−(ξ∆m−π∆m)‖∆m = O(| ln(h)|n0−1hm+1), (73)

with n0 specified inLemma 3.1.

5 Numerical examples

To illustrate the theory, we first consider the following linear problem:

z′(t) =
1
t

(
0 1
2 6

)
z(t)−

(
0

4k4t5 sin(k2t2) + 10t sin(k2t2)

)
, (74a)(

0 1
0 0

)
z(0) +

(
0 0
1 0

)
z(1) =

(
0

sin(k2)

)
. (74b)

The exact solution of this test problem reads

z(t) = (t2 sin(k2t2), 2k2t4 cos(k2t2) + 2t2 sin(k2t2))T .

In Table 1, we usedk = 5. Note that the eigenvalues ofM(0) are3±
√

11.
The computations were carried out with the subroutines from our MAT-

LAB code sbvp (cf. [1]) on fixed, equidistant grids. For the purpose of
determining the empirical convergence orders the mesh adaptation strat-
egy was disabled. The tests were performed in IEEE double precision
with EPS≈ 1.11 · 10−16. In Table 1, we give the exact global error
errcoll := ‖R∆m(z) − R∆m(p)‖∆m of the collocation solution for the re-
spective stepsizeh, and the convergence orderpcoll computed from the er-
rors for two consecutive stepsizes. Moreover, the error of the error estimate
with respect to the exact global error, errest := ‖(R∆m(z) − R∆m(p)) −

4 In fact, we requirez ∈ Cm+2[0, 1].



22 Othmar Koch

(ξ∆m −π∆m)‖∆m , is recorded, together with the associated empirical con-
vergence orderpest. In accordance with the theoretical results from§§3–4,
convergence ordersO(h4) for collocation andO(h5) for errest are observed
for the choicem = 4.

Table 1. Convergence orders of collocation and error estimate for (74) (m = 4)

h errcoll pcoll errest pest

2−4 1.1876e+00 3.4628e−01
2−5 6.1802e−02 4.26 7.3370e−03 5.56
2−6 3.6828e−03 4.07 2.4145e−04 4.93
2−7 2.2746e−04 4.02 7.4780e−06 5.01
2−8 1.4174e−05 4.00 2.3533e−07 4.99
2−9 8.8522e−07 4.00 7.3218e−09 5.01

As a second test example, we consider a nonlinear problem from [16],
see also [23]:

z′(t) =
1
t


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 z(t) +


0
0

βt2 + z1(t)z2(t)
t2 − z2

1(t)

 , (75a)


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 z(0) +


0 0 0 0
0 0 0 0
1 0 0 0
0 −1/3 0 1

 z(1) =


0
0
1
0

 , (75b)

with β = 5000. Since the exact solutionz = (z1, . . . , z4) of this problem
is not known, we use a reference solution on a very fine grid to determine
the empirical orders of errcoll and errest. The results are given in Table 2.

Table 2. Convergence orders of collocation and error estimate for (75) (m = 4)

h errcoll pcoll errest pest

2−4 3.5016e−02 6.0759e−03
2−5 2.3394e−03 3.90 2.0141e−04 4.91
2−6 1.4830e−04 3.98 6.3615e−06 4.98
2−7 9.2822e−06 4.00 1.9924e−07 5.00
2−8 5.7990e−07 4.00 6.2215e−09 5.00
2−9 3.6224e−08 4.00 1.9313e−10 5.01
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Both examples presented in this section illustrate the asymptotical cor-
rectness of the error estimate analyzed in this paper.

6 Conclusions

In this paper, we have analyzed an a posteriori error estimate for singu-
lar boundary value problems based on the defect correction principle. This
represents an extension of previous results for the most general class of
problems with a singularity of the first kind, where the leading coefficient
matrix may have both eigenvalues with negative and positive real parts. In
order to derive a bound for the error of the error estimate as compared with
the exact global error of collocation, we have derived a new representation
of the global error of collocation methods, showing that the error is at least
O(hm) if polynomials of degreem are used to define the basic numerical
scheme. The analysis of the error estimate finally revealed that the error of
the error estimate isO(| ln(h)|n0−1hm+1) with some positive integern0.
Thus, for our generic choice of an even number of equidistant collocation
points, the error estimate is asymptotically correct and may serve as a sound
basis for adaptive mesh selection.
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