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Introduction

In recent years, the importance of using special numerical integration schemes
that reflect certain geometric properties or retain important conserved quantities
of the flow of a differential equation has been widely recognized [13], [14]. Many
of these methods are applicable to particular types of differential equations only.
Examples of these are the Stormer/Verlet method and the exponential midpoint
rule, which are discussed in detail in this report.

A cheap and efficient way to estimate the global error of a numerical method used
to solve an ordinary differential equation (ODE) is the defect correction principle
[22], [24]. The idea can also be used to successively improve the accuracy of the
numerical solution ([2], [5], [8], [9], [10], [12], [20], and the references therein). In
this acceleration technique, a number of neighboring problems have to be solved,
which are not necessarily of the same type as the original problem. Therefore
it may happen that the neighboring problems cannot be solved by the same
geometric integrator as the original problem. In this paper, we present splitting
methods [13] to avoid such difficulties.
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Chapter 1

Theoretical Considerations

1.1 Classical Defect Correction

First, we describe the classical version of iterated defect correction (IDeC) [5], [8],
[20]. Consider an initial value problem

() = f(t,2(1),  2(t) = 20, (1.1)

to be solved on the interval [ty, tenq]- Subsequently, we assume that a sufficiently
smooth solution z of the analytical problem exists on the whole interval. The ap-
proximate solution z,[lo} := (20, --.,2n) is obtained by some discretization method
® on a uniform grid® (o, ...,ty), where t;;; —t; = h, i =0, ..., N — 1. Denote
by pl¥ (t) the polynomial of degree N interpolating the values of z,[lo]. Using this
interpolating function, we construct a neighboring problem associated with (1.1)

whose exact solution is pl%(¢):

(1) = f(t,2() +dO(1),  z(to) = 2, (1.2)

where dl°(t) := pl(t) — (¢, p!%(t)). We now solve (1.2) using the same numerical
method ® and obtain an approximate solution pg)] for pl° (¢). This means that for
the solution of the neighboring problem (1.2) we know the global error which is a
good estimate for the unknown error of the original problem (1.1). This estimate

can be used to improve the first solution,
z,[lﬂ — Z}[lo] 4 (p[o] —pf]) .

Now, these values are used to define a new interpolating polynomial pl/(t) by
requiring plll(t;) = zj[-l]. Again, pl'l(t) defines a neighboring problem in the same
manner as in (1.2), where again the exact solution is known, and the numerical

solution pE] of this neighboring problem serves to obtain the second improved

solution

z,[f} = z,[LO] + (pm - pg]) .

IFor the classical version of IDeC, piecewise equidistant grids are required for the classical
order sequences to be observed, see for example [3], [4]. This restriction is not critical in our
case, since many geometric integration methods rely on the assumption of equidistant grids to
retain their advantageous properties [13].
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This process can be continued iteratively. For obvious reasons one does not use
one interpolating polynomial for the whole interval [ty, tenq] in practice. Instead,
piecewise functions composed of polynomials of (moderate) degree m are defined
to specify the neighboring problems.

In many situations, the defect correction principle yields an asymptotically correct
error estimate and a successive improvement in the convergence orders of the
respective iterates, up to a certain limit determined by the smoothness of the
problem data and the value of m.

1.2 Splitting Defect Correction

If for the scheme described in Section 1.1, the basic numerical solution method
® is a geometric integrator, the neighboring problem (1.2) may have a form to
which the integrator cannot be applied straightforwardly. For example, if the
Stormer/Verlet method is applied to a Hamiltonian system (see Sections 1.2.1
and 2.1), (1.2) is no longer an autonomous, separated system. Another exam-
ple is the exponential midpoint rule designed for linear homogeneous systems,
cf. Section 2.2.

In order to be able to use iterated defect correction even in these cases, we employ
splitting methods, cf. [13]. To apply Strang splitting to (1.2), we split the time-
dependent vector field into its components f(t,y) and d°(t). We denote the
numerical flow of f(¢,y) by ®, 4, such that one step (¢,7;) — (t+h, n;4+1) with step
size h of the basic scheme ® applied to (1.1) can be written as 7,41 = @ (1;). The
numerical flow A;; of the other component d®(t) is defined by the quadrature
rule

t+h
Anly) =y + / DO(r)dr, (1.3)
t

where D!U(t) is a piecewise polynomial interpolant of degree < m — 1 of dl’)(t).

To explain this more precisely, we require some additional notation. Choose the
grid (to,...,ty) such that N = Nym for some integer N;. We split the integra-
tion interval into subintervals J; := [tim, t(i+1)m]- On the interval J;, we define
interpolation nodes

Tij =tim +hmp;, 7=1,....m, where0<p; <ps<---<pnp <1l (1.4)

For the purpose of this paper, we use interpolation at either Gaussian or Radau
points [1] in order to define DI%(¢). This implies that the maximal convergence
order of IDeC iterates is O(h*™) for Gaussian points and O(h*™~ 1) for Radau
points, respectively, see Section 1.4.

Using ®; , and Ay, from above, the numerical solution of (1.2) is computed using
the numerical flow

Uin = Ditnsa,n/2 © Pep 0 D)2, (1.5)
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where o denotes the composition of the numerical methods (which means that
the result computed by one method is the starting value for the next method).
We call the method where the solution of the neighboring problems is computed
in this way iterated splitting defect correction (ISDeC).

1.2.1 The Stormer/Verlet Method

To illustrate the above considerations, we discuss the Stérmer/Verlet method.
This numerical solution method is a geometric integration scheme of order two
which is particularly suited for the solution of Hamiltonian systems of ODEs, or
more generally, separated ODEs.

Consider a system of two separated autonomous ODEs

p(t) = f(p(t),q(t)), 4(t) = g(p(t), q(t)). (1.6)

One step of the Stormer/Verlet method for (1.6) is defined by

h
Qiv1/2 = Qi + §g(pi, Qi—H/Q): (1.7)
h
Dit1 =Dpi + 5 (f(pz‘,%+1/2) + f(pi+1,%+1/2)) ) (1.8)
h
Qi+1 = Qit1/2 + §Q(Pz'+1; Qit1/2)- (1.9)

For a Hamiltonian system, the method retains important conserved quantities
of the exact flow like the angular momentum, see Section 2.1. In a Hamiltonian
system, there exists a scalar function H(p, q) such that

f(p,q) =—-VH(p,q), 9(p,q) = VpH(p,q). (1.10)

Note that for the exact flow the Hamiltonian H is preserved, that is,

H(p(t),q(t)) = const

for every solution (p, ¢) of (1.6). The Stérmer/Verlet method preserves the Hamil-
tonian H up to terms of order O(h?), even for very long time intervals. Other
constants of motion, as for example the angular momentum, are discussed in [14],
see also Section 2.1.

Obviously, the neighboring problem (1.2) is not a Hamiltonian system in general,
the equations are not even posed as a separated system of autonomous differential
equations. Consequently, the Stérmer/Verlet method cannot be applied to (1.2)
without the modifications of ISDeC.
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1.3 Composition Methods

We now generalize the approach of ISDeC outlined in Section 1.2 for the case
where the basic scheme @ is a composition method.

As a first example, consider the Stérmer/Verlet method from Section 1.2.1. This
numerical scheme can be written as the composition of the symplectic Euler rule
and its adjoint method. One step (t;,pi,q) — (tiv1, Pir1, ¢is1) of the symplectic
Euler method ¢ applied to (1.6) is defined by

di+1 = ¢ + hg(pi, git1),
Pit1 = pi + hf(Di, ¢it1)- (1.11)

The adjoint method ¢* is conversely defined by

Pit1 = Di + hf(Pit1, ¢),
Gi+1 = ¢ + hg(piy1, ¢i)- (1.12)

The numerical flow ®,) defined by the Stérmer/Verlet method (1.7), (1.8) and
(1.9) can equivalently be expressed as

Py = ¢r+h/2,h/2 O Pt h/2-

Remark: This numerical scheme is also denoted as Version A of the
Stormer/Verlet method, while the method resulting from ¢y p/25/2 © ¢;“,h /2 is the
dual scheme denoted as Version B, see [13] and [14].

In this reformulation, we can apply the idea of splitting defect correction in several
different ways. In addition to simply using (1.5), we could alternatively apply the
splitting idea to ¢ or ¢* and use a composition of the resulting schemes to define
the flow W of the neighboring problem (1.2). This idea is discussed for general
composition methods in the remainder of this section.

Consider a composition method
®=0bo...00% ol (1.13)

Then, the numerical method ¥ for the solution of the neighboring problem (1.2)
can be defined by

Win = Dyis, anpean © ekl o Ay i5ensan © 0 Dyyionon © et o Apibinons (1.14)
where 01, ...,0511 are given real numbers which satisfy
j—1
S+ tdp=1, 6= 6,
i=1

and Ay is given by (1.3).

Examples. Let us discuss some examples of composition methods.
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e Symmetric composition of symmetric methods [13, Sec. V.3].

(Dm = ¢t+’?jh,7jh7 .7 = ]-a -5, (]‘]‘5)
where ¢ is a symmetric second order method, the coefficients s = v1,7,-1 =
Y2, ... are symmetric, and ¥, := Zf;ll 7;- Examples of possible choices for

¢ are the Stormer/Verlet scheme, the implicit midpoint rule, or the implicit
trapezoidal rule. The coefficients v; may be chosen for example such as to
yield Yoshida’s method,

s=3, m=y=1/2-2Y%), 4p=-23/(2-2"%), (1.16)
or Suzuki’s method,
s=5 m=m=mnu=71=1/4-4"%), y3=—43/4-43) (117

Both of these choices (in conjunction with a symmetric second-order basic
scheme) yield methods of order 4, cf. [13, Sec. I.4]. A natural choice for the
coefficients 4, in the splitting (1.14) is

(51 :71/2, 6j = (’)/j_l-f-’)/j)/z, j:2,...,8, (55+1 :’)/3/2, (118)
since then ¥ can be written as
U =blo...owl (1.19)

where

UL = A s intsh/ansh/a © Beiazhagh © Dessshagnsa: (1.20)

Consequently, ¥V is a symmetric second-order method and ¥ has the same
order as @, see [13, Sec. I1.4].

o Symmetric composition of first order methods.
For s even we choose

Pl2i-1

I = ¢t+’72j—1h,’)’2j—1h7 (I>[2j] = ¢I+’72jh,’)/2jh,’ .7 =1,... 8/2, (121)

where ¢ is an arbitrary first order method, ¢* the adjoint method of ¢, and
the coefficients v; satisfy

j—1
Vs = V1, Vs—1 = 725+ -, /5/] :Zf)/]
=1

As an example of such a composition the Stérmer/Verlet method was dis-
cussed at the beginning of this section. A possible choice for the coefficients
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7; is McLachlan’s method (which yields a fourth-order method for suitable
9),

s =10, m =m0 = (14 — V19)/108, Yo = Yo = (146 + 5v/19) /540,
v3 = v3 = (=23 — 201/19) /270, 74 = 7 = (=2 + 104/19)/135,
Y5 = = 1/5,
(1.22)
cf. [13, Sec. V.3.1]. Again, the choice of the coefficients §; in (1.14) according
to (1.18) ensures that ¥ has the same order as .

A special case is given by the additional requirement v;_1 = 725, j =
1,...,8/2in (1.21). Then, the definition of the resulting basic scheme ® is
included in the formulation (1.15), since for a first order method ¢y, the
composition ¢j , Joh)2 © Gt,n)2 is a symmetric second order method. In the
representation (1.21) we have more freedom in choosing the coefficients d;:
For each parameter A € [0,1] (A = 1 corresponds to (1.18)), the choice

51 = )"Ylv

0g; = (1=XA)(v2j-1+725), j=1,...,5/2, (1.23)
0201 = A(y25 + Y25+1), i=1,...,8/2-1, '
5s—|—1 - )\75

ensures that ¥ has the same order as @, cf. [13, Sec. 11.4].

In this way, we may reformulate an IDeC method analyzed in [21] to fit into
the context of the composition methods just discussed. The basic method
is

Pih = Diinjans2 © Prhy2s

where ¢ and ¢* are the explicit and the implicit Euler methods, respectively.
Consequently, @ is the implicit trapezoidal rule. ISDeC is realized as

Win = Orinjons2 © Din © Prpo (1.24)

In [21] it has been demonstrated for linear problems that the usage of
Gaussian points in the quadrature rule (1.3) leads to an order sequence
O(h?), O(h*),... for the iteration error (the error of the respective IDeC
iterate as compared with the fixed point of the iteration), which means that
the order of the global error increases by two up to the convergence order
of the fixed point, i.e. O(h®*™). This asymptotic behavior is the same as for
the geometric integrators of this paper, see Chapter 2.
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1.4 Convergence Orders for ISDeC Iterates

1.4.1 Order Results for Classical IDeC

It is well known that for sufficiently smooth non-stiff systems (1.1), the iterates
z,[l"] = (z([)"], ce z%]) computed by classical iterated defect correction (IDeC, see

Section 1.1) satisfy
A 2(t) = O(pmin(@+Dpm), (1.25)

where z(t) denotes the exact solution of (1.1) and p is the order of the basic
discretization scheme ®. Note that the maximal attainable order is O(h™). The
proof (cf. e.g. [12]) of (1.25) is usually based on an asymptotic expansion of the
global error of the basic solution method .

1.4.2 Order Results for Schild’s Method

The key idea in the convergence analysis of the ISDeC method which we want to
outline here and which was given in [21] for the special case (1.24), is to estimate
the iteration error of z,[:’J instead of the global error. First, we note that iterated
defect correction converges to a fixed point p* under fairly general assumptions
[4], [5], [11]. The iteration error z,[l”] — p* is the error of the respective iterates
as compared with the fixed point. Order results analogous to (1.25) can then be
derived by utilizing the approximation properties of the fixed point. This fixed
point is easily identified as a certain collocation solution of (1.1): Let p*(¢) denote
the continuous piecewise polynomial function defined by p*(t) = pi(t) for t € J;,
where the p}(t) are polynomials of degree < m satisfying the collocation relations

ﬁ;(Ti’j) :f(Ti’j,p:(Ti’j)), iZO,...,Nl—l, _] = 1,...,m. (126)

The defect

d*(t) = p;(t) — f (,p" (1))
of p*(t) vanishes at all collocation nodes, so that the numerical flow A, of d*(?)
defined analogously to (1.3) for the defect correction step starting from zj :=
(p*(to), ..., p*(tn)) is the identity, and z; is mapped onto itself.

If (1.1) is linear, one defect correction step z) — 2l

application of an affine operator,

can be interpreted as the

z,[LUH] = Shz,[lu] + vp,.
In this case, the iteration error 6;1‘/] = z,[lu] — p* is propagated as

el = 5,6, (1.27)
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If we introduce Sobolev-like norms by

k

lenllk := 0 ,Juax max
K=

%qi (t) (1.28)

dr ‘

where ¢;(t) denotes the polynomial of degree < m which interpolates e, at ¢;, | =
im, ..., (i+1)m, the results of [21] for the special case (1.24) can be summarized
in terms of the operator norms

S,
ISl = sup 1<l
en0 |1€nllk
which are given in Table 1.1.

L\ k 0 1 2 3 m—1 m

0[O O(h) 00 O ) ()

1 o) O O(h?) o(n?) 0(h%)

2 o)  O(h?) o2 0(h%)
m—1  om 0(h?)

m O(h) or O(h?)

Table 1.1: Orders of [[Sy][x,¢ for Schild’s method.

Here, ||Sh|lm,m = O(h?) holds, if p; from (1.4) satisfy

" m
> pi= o (1.29)
7j=1

This relation holds in particular if p; are symmetric in [0, 1] like Gaussian points?.
Estimates of the iteration errors ||5£f] ||z are now easily derived from the following
estimates for the iteration error of the basic solution, sE?] = z,[LO} —p*:

lei’lle =0(r),  k=0,...m=-p+1,

1@l = O™ %), k=m-p+2,...,m—1, (1.30)

I [0]” [ O(h?) if p; satisfy (1.29),
“hllm = O(h) otherwise.

p again denotes the order of the basic method ®, for example p = 2 for the
trapezoidal rule [21]. For the higher order composition methods considered in
Section 1.2, we use a similar argument to analyze the iteration error, yet in that

2Actually, in [21] only the case of symmetric p; is considered. The generalization (1.29) is
given in Appendix A.
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case p = 4 holds. Subsequently, we assume m > p, otherwise the ISDeC procedure
does not make much sense. The estimates above follow from

121 — 2|l = O(B?), k=0,...,m.

This can be proven by means of an asymptotic expansion of the global error of

®: If a sufficiently long error expansion exists, then there is a smooth function
e(t, h) such that

) = 2(t;) = e(t;, h)AP,

J

with %e(t, h) = O(1), k = 0,...,m. Consequently, for the polynomial ¢ from
(1.28) we conclude

d* d* oF
‘%qz(t)‘ < ﬁqi(t) ﬁe (t,h)hP| + ‘—e (t,h)h
< O(W™PH=F) L O(h?) = O(hP), k=0,...,m,

which follows from standard results for polynomial collocation [16]). Moreover,
we use the relations

P — llo = O(h™*1) if p; define a collocation scheme of order > m + 1,
P 0 O(h™)  otherwise,

Ip* — 2lle = O(h™%), k=1,...,m—1,

Ip* = 2||m = O(h?) if p; satisfy (1.29),
P ™ 1 O(h) otherwise.

These are standard results for collocation methods [1], again taking into account
[16]. The improved estimate ||p* — z|l,, = O(h?) if (1.29) holds follows from
Lemma 2 in Appendix A. The technical details are given in [17].

For a basic method @ of order p = 2 and p; satisfying (1.29), e.g. for the implicit
trapezoidal rule and Gaussian points, the estimates of the initial iteration error

55)] = z,[LO} — p* are simply

€9, = O(h?), k=0,...,m.
Now assume that the estimate ||Sp|lmm = O(h?) holds. Then we may conclude

ek e < llek ™™ llm < 115

< CR|ellm = O(R>*?),  (1.31)

which implies the order sequence
O(h?),0(h"),0(h%), ... (1.32)

of the iteration errors ||5£L”]||k, k=0,...,m, v=0,1,2,....
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If (1.29) does not hold, ||Sh||m,m = O(h) in general. Using

1€ =0, k=0,...,m—1,
e = O(R)

and the estimates

e Mo < IIShllozllers < CRlM .,
1 e < 1SallepsilleM ke < CR2 €M kpr, k=1,...,m—1,

v+1 v v
leY N < 1Sallmgmllel N < CRYIEY m

(cf. Table 1.1), we obtain an order sequence for ||£LV]||0, v=0,1,2,...:
O(Rh?),0(h"),...,0(R*2),0(R>™h),..., (1.33)

i.e. the order of ||5£f]||0 increases by two in every defect correction step up to
v = m — 2. For v > m — 2 the order increases only by one in every defect
correction step.

1.4.3 Experimental Order Results for ISDeC Methods

The investigations from above for Schild’s method motivate to compute ||Sh||x.e
and the corresponding orders numerically for other ISDeC algorithms applied to
simple test problems in order to gain insight into the convergence behavior of the
algorithm. To this end we consider the test equation

v =Xy, y(0)=0, telo0,1]. (1.34)

The basic scheme ® is composed according to (1.21), where the components ®U!
are chosen as

oll(y) = 1My, (1.35)
which represents the exact flow of (1.34), or alternatively as a numerical flow
®Ul(y) = R(y;h\)y, (1.36)

where R(z) denotes the A-stability function of ®Ul(y) [15]. A matrix representa-
tion of the operator S, can be computed explicitly using techniques developed
in [2]. Instead of (1.28), for the purpose of obtaining empirical order results we
define Sobolev-like norms by?

_ 1 2 k
lenlle = b2 lenl, + IDDenll?, + 1DPenl2, + -+ [DPenl,  (1.37)

3Note that we do not include the component &g in €, which is implicitly assumed to be 0.
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with &, = (g9, -..,en)? € RY and matrices D,(f) to be specified below, such that
(1.28) and (1.37) are equivalent uniformly in A (see also [21]). In (1.37), we use
discrete Euclidean norms N
lenllz, == lex|”
k=0

For D,(f) we choose divided difference operators of order k, where differences are
only formed from components ¢; belonging to the same interpolation interval .J;,
and the implicitly given component €y = 0 has to be taken into account. E. g.,
for N =6, m = 3, we have

1
-1 1
m_1 -1 1
Dh_h -1 1 ’
-1 1
-1 1
-2 1
(2)_i 1 -2 1
Dh_hz 1 -2 1 ’
1 -2 1

1 /3 -3 1
3 _ L
Dh_h3< -1 3 -3 1)'

Note that the matrix norms ||S||x,c = sup,, 4 % can be explicitly computed
as ||Shllk,e = /141, where py > pg > --- > py > 0 are the (real!) eigenvalues of
the generalized eigenvalue problem

Sth,gth = uVp (1.38)
with positive definite matrices
Vik = Iy + (DYDY + (DY DP) + - 4+ (DIYTDF e RV*V. (1.39)
To see this, we use the following lemma:

Lemma 1 Let V,V € RV*N be symmetric, positive definite matrices, and define
a norm by

lzlly == {z, Vi) = VaTVz. (1.40)
Now, an associated matrix norm defined as

14 (1.41)

vi = max ||Az|ly, ARV
Y fallg=1
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can be computed from
1Allv.7 = VA1, (1.42)

where A\ > Ay > --- > Ay > 0 denote the eigenvalues of the generalized eigen-

value problem .
ATV Az = \Vz. (1.43)

Proof. We wish to compute the maximum of || Az||y under the constraint ||z||; =
1, which is the same as the square root of the maximum of 2T ATV Az under the
constraint 1 — 27V = 0.

We define a Lagrangian function with Lagrange multiplier A by
h(z,\) = 2" ATV Az + X- (1 — 2" V).
We note that B
Vah(z,\) = 2(ATV Az — \V2)T,

whence a solution x of our maximization problem must necessarily be a gener-
alized eigenvector z of (1.43) satisfying ||z||;; = 1. The maximal value is equal

to
VITATV Az = VDiTVz = V),

where A\ denotes the eigenvalue associated with z. Thus, we need to show that all
eigenvalues of (1.43) are real and nonnegative.

From (1.43) we obtain the eigenvalue problem
VATV Az = Az,

since V is nonsingular from our assumptions. Here, the matrix V=1 ATV A4 is not
symmetric in general. However, there exist nonsingular, lower triangular matrices
L, L such that

V =LL",
V= LI,
which can be computed by Cholesky factorization. Now,
LY(VTATVA(IY) ™ = LYIY 'L TATVALYY
LAV A)(LH"
= (L7'ATL)- (L7'ATL)"

~
=HT

=: G,

and thus G is symmetric. Consequently, V- 'ATV A is similar to a symmetric
matrix, whence all eigenvalues of V=1 ATV A are real. By observing that G is also
positive semidefinite, we conclude that the eigenvalues are nonnegative. O
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We now give a detailed description of two particular experiments,
and give a summary of observations from similar experiments. The
test runs were implemented in C++ using “quad-double” precision,
see http://crd.1lbl.gov/ dhbailey/mpdist/. This extended precision (ap-
proximately 64 decimal digits) was necessary, because the terms (D\™)” D) con-
stituting (1.39) differ significantly in their order of magnitude, which made it
impossible to get reasonable results by using ordinary floating point arithmetic.
For the linear algebra the Template Numerical Toolkit (TNT) together with the
JAMA /C++ library was used, see http://math.nist.gov/tnt/. Some minor
modifications were necessary in order to make JAMA/C++ work with quad-
double.

1.4.4 Experimental Order Results for Simple ISDeC

For the first experiment we choose A = —1 in (1.34) and m = 6, p; from (1.4) are
Gaussian points, as basic scheme we use the implicit midpoint rule, and ISDeC is
realized according to Section 1.2. The results are given in Table 1.2. We see that

N =96
2\ k 0 1 2 3 4 5 6
0 1.38.10791  7.28.1079% 6.67-1079 553.1079% 553.10-9% 5.53.1079 5.53.10°06
1 8.45-1079% 460-1079 1.44.1079 1.44.1079 1.44.1079 1.44.10°05
2 7.32-1079  4.04-1079 1.90-1079 1.90-1079 1.90.10795
3 5.89-1079 3.42.1079 2.30-1079 2.30-1070%
4 4.24-1093  264-10705 2.64.1005
5 2.45.10703 3,04 .107095
6 3.38.1079%
N =192
L\ k 0 1 2 3 4 5 6
0 1.38-1079T  3.63-10"9% 1.67-10"9 1.38-1079 1.38-10-9% 1.38-10796 1.38.10~ 98
1 4.22-109  1.15-1079 3.61-1079 3.61-1079 3.61-10"9 3.61.1096
2 3.66-1079%  1,01-1079 4.75-1079 4.75.10796 4.,75.10°06
3 2.95-1079 855-107% 5.75.107% 5.75.107096
4 2.12-1079  6.59.10"%  6.59.10-06
5 1.22-1079  7.60-10706
6 8.46 - 10~06
Observed order N =96 — N = 192
L\ k 0 1 2 3 4 5 6
0 0.00 1.00 2.00 2.00 2.00 2.00 2.00
1 1.00 2.00 2.00 2.00 2.00 2.00
2 1.00 2.00 2.00 2.00 2.00
3 1.00 2.00 2.00 2.00
4 1.00 2.00 2.00
5 1.00 2.00
6 2.00
Table 1.2: Empirical orders of [[Sy[[¢,x- ISDeC based on IMR, m = 6 Gaussian points.

in this case the values of || Sy || agree with Table 1.1.
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This experiment was repeated with other polynomial degrees m, with the exact
flow as basic method, with RadaullA-points p; (which do not satisfy (1.29)), and
with collocation points

jG+1)
(m+1)(m+2)

3
Pi=5 (1.44)

which satisfy (1.29) but for m > 3 are not symmetric in [0,1]. In each case
the obtained values for the orders of ||Sy||x¢ agreed with Table 1.1. Particularly,
|Sllm.m = O(h?) for p; from (1.44).

Repeating the reasoning of Section 1.4.2 we conclude that the following order
sequences of the iteration errors ||e£f]||0, v =0,1,... (computed according to
(1.37)) are to be expected for simple ISDeC:

o If (1.29) is satisfied, cf. (1.32):

O(Rr*), O(hY), O(R®),...

e If (1.29) is not satisfied, cf. (1.33):

m=4: 0O(h?), OhY), Oh%), O(K7), O(RK?), O(R?),.
m=>5: O(h?), O(hY), Oh%), O(h®), O(h®), O(h"),
m==6: O(h?), O(h*), O(h%), O(R?), O(h'?), O(R'),
m="7: O(h?), O(h"), Oh%), O(h®), O(h'), O(h'?),

These values are confirmed by the numerical results of Chapter 2.

1.4.5 Experimental Orders for Composition Methods

For the second experiment we again choose A = —1 and m = 6 Gaussian points
pj. As basic scheme ® we use Suzuki’s composition method (1.17) based on the
implicit midpoint rule. The results are given in Table 1.3, the observed orders
agree well with the scheme given in Table 1.4.

The experiment was repeated with Yoshida’s and McLachlan’s composition
schemes (based on the implict midpoint rule and the explicit and implicit Euler
methods, respectively), with other polynomial degrees m, with RadaulTA points
pj, and with p; chosen according to (1.44). In each case the obtained values for
the orders of ||Sy||, agreed with Table 1.4.
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N =96
2\ k 0 1 2 3 4 5 6
0 1.03-10792  5.58-1079% 3.05-10797 1.68-10799 1.54.10-1T 1.30-10"1T 1.30-10~1T
1 4.88-10793 268-1079 1.49-10797 851-10"10 293.10°11 293.10" 11
2 4.45-10793  248-.1079 1.41.10797 8.50-10"10 3.48.10"11
3 3.74-1079 213.1079 1.28.10797 9.44.10710
4 2.73-10793  1.64-10-9 1.21.10707
5 1.58-1079  1.16.10705
6 2.08 - 1005
N =192
L\ k 0 1 2 3 4 5 6
0 9.21-1079 249-.107% 6.80-10"9% 1.87-10-1° 9.,51.-10~® 8.10-10-18 8.10-10"13
1 2.44-1079  6.70-107% 1.86-1079® 5.32.10~11 1.83.10"12 1.83.10"12
2 2.22-1079  6.19-1079 1.77-1079 5.31.10"11 2,18.10"12
3 1.87-1079  5.33.1079 1.60-1079% 5.90.10"11
4 1.37-1079%  4.11-10-9 1.51.10-08
5 7.89-10704 2.91.10706
6 5.20 - 1006
Observed order N =96 — N = 192
2\ k 0 1 2 3 4 5 6
0 0.16 1.16 2.17 3.17 4.02 4.00 4.00
1 1.00 2.00 3.00 4.00 4.00 4.00
2 1.00 2.00 3.00 4.00 4.00
3 1.00 2.00 3.00 4.00
4 1.00 2.00 3.00
5 1.00 2.00
6 2.00

Table 1.3: Empirical orders of [[Si[|¢,x- ISDeC based on Suzuki (IMR), m = 6 Gaussian points.

L\ k 0 1 2 3 4 m—3 m—2 m-—1 m

0 | O O(h) O@R%) OH3 % R G G) %)

1 o(h) O2) Oh3) O(h o(hY) O(hY) O(hY) o(hY)

2 O(h) (R?)  O(h®) O(h*) O(h*) O(h*) o(h*)
m-—3 O(h) O(h?) O(h3) O(h%)
m—2 O(h)  O(h?) O(h3)
m—1 O(h) O(h?)

O(h) or O(h?)

Order O(h?) for ||Sh||m,m holds for p; which satisfy (1.29).

Using (1.30) with p = 4 and the estimates

el Mlo < 1Sk llo.

v+1
el ]l < 1Skl

le

le

[v+1
h

[v+1
h

EL[r

< ChYeM 4,

Nz < N1Snllm—smlle i < CB[e|n,
e ™ et < [IShllmtmller I < CR?

Now < 11Sllmm lEf Nm <

lew s

m
Table 1.4: General pattern of observed orders of [[Syl[x,¢ for Yoshida, Suz

ensslleMirs < OB lers, k=1,...

am_3a

Ch2|[el ||, if (1.29) is satisfied,
C’h||6£ly}||m, otherwise,

uki, McLachlan.
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(see Table 1.4), we can again derive order sequences for the iteration errors ¢

We demonstrate this for the special case m = 6:

o If (1.29) is not satisfied:

1. Theoretical Considerations

k=0 k=1 k=2 k=3 k=4 k=5 k=6
ek | Ot oY) oY) oY) om}) O@h*) O
lep s | O(AT)  O(RT) O(h®) O(R®) O(h*) O(h?) O(h?)
Ik | O(®) O o) Ok Ok®) O(') O

This leads to the order sequences for ||6£:j]||0

m==6:

m="7:

O(hY), O(hT), O(K®), O(h?), O(h'®), O(h™),. ..
(BY), O(K®), O(h?), O(R®), O(h'), O(h'2),. ..

O(hY), O(h®), O(RY), O(h'Y), O(h'2), O(R), ...
(BY), O(h®), O(h'Y), O(h'2), O(R3), O(h™), ...

which are also observed in the numerical experiments reported in Chapter?2.

If (1.29) is satisfied:

k=0 k=1 k=2 k=3 k=4 k=5 k=6

eyl | O(h) O(h%) O(h") O(h') O(h*) O®) Oh)

lep e | O()  O(RT) O(S) OS) O(?) O(h*) Oh?)

ey lls | O(R®) _O(h%) O(h®) O(h*) O(K) O(h®) O(h°)

This leads to the order sequences for ||5£f]||0

m==6: O(h'), OR"), Oh?), O™, O(R'), OK"),...
m="7: O(hY), OK®), Oh'), O(h'?), O(R*), O(h),...

= O(h4)7 O(hs), O(hlo) O(h 2), O(h 4), O(h 6)""

= O(r*), O(h®), O(R™), O(A'®), O(hY), O(RY),...

Note that the actually observed orders for m = 6 and m = 9 were in
fact higher in the numerical experiments reported in Chapter 2 than the
orders concluded from Table 1.4. We actually observed the following order

sequences:
m==6:
m=29:

O(hY), O(h®), O(R'%), O(h'?), O(h'), O(R'), ...
O(hY), O(h®), O(h'2), O(h™), O(h'S), O(R™), ...



Chapter 2

Numerical Results

2.1 Hamiltonian Systems — The Stormer-Verlet
Method

First (and most comprehensively), we discuss the Stormer/Verlet method intro-
duced in Section 1.2.1. This method demonstrates its advantages particularly
when applied to Hamiltonian systems (1.6) and (1.10). The example we consider
here is the Kepler problem, defined by the Hamiltonian

1 1
H(p1,p2,q1, @2) = =(p] +p3) — ——,
2 Vi +a

cf. [13, Sec. 1.2]. The initial values are given as

a0 =1-c, B0)=0, G0)=0, &O)=\/;15 (22

where 0 < e < 1. In our experiments we use e = 0.6.

(2.1)

The exact solution of the Kepler problem is periodic with period 27. Conse-
quently, we choose the integration interval [tg, tena] = [0, 27]. Note that the Hamil-
tonian H is constant along the exact flow of the problem. Moreover, the angular
momentum

L(p1,p2, q1,92) = q1p2 — @211 (2.3)
is preserved.

Now, we discuss the asymptotic order of the iterates computed by ISDeC based on
the Stérmer/Verlet method. First, we remark that under certain circumstances,
the ISDeC iteration converges to a fixed point p* (in the sense that lim, zj[.”] =
p*(t;), 7 =0...,N). This fixed point is a piecewise polynomial function of degree
< m, and from the definition of A, it is clear that this fixed point is characterized
by p*(7i;) — f(7ij, p*(7i;)) = 0, where 7; ; are the points where DI% interpolates
dl%, see Section 1.2. This means that in this situation the ISDeC iterates converge
to a collocation polynomial [5].

Figures 2.1 to 2.5 give the absolute errors of the respective ISDeC iterates with
respect to the fixed point at t.,q = 27, using interpolation of the defect at m
Gaussian points 7; ;, where m = 4,...,8. In the diagrams, the left column refers
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Figure 2.1: ISDeC, m = 4 Gaussian points, based on Stérmer/Verlet for Kepler problem.

to Version A of the Stérmer/Verlet method, while the right column gives the
results for Version B (cf. Section 1.2.1). Obviously, the results are virtually the
same, so we do not distinguish between the two versions in our discussion. In the
top diagrams we give the iteration errors on a logarithmic scale plotted against
the (equidistant) step size h, while the diagrams below show the empirical orders
of the iteration errors. The circles o illustrate the errors and the convergence
orders for the fixed points, i.e., collocation solutions of order 8, 10, 12, 14 and
16, respectively. The convergence orders as compared to the fixed points are
O(h?), O(h*), O(h®),.... This corresponds to classical theory which predicts the
order to increase by two in every step if the data is sufficiently smooth, see Sec-
tion 1.4 and [5]. From the triangle inequality it is clear that the global errors of the
iterates as compared to the exact solution have orders O(h?), O(h*),..., O(h®™),
which do not increase further than the order of the fixed point.

Next, we consider the same procedure, where instead of Gaussian points we choose
7;,; as the Radau points in (1.3), see for example [1]. This means that the max-
imal attainable convergence orders are 7, 9, 11, 13 and 15, respectively. The
order sequences of the iteration errors are similar as for Gaussian points. In the
first few steps, an increase of two is observed. However, from some point on the
increase is reduced to only one order we gain in every step. The first iterate that
is affected by this reduction is determined by the polynomial degree m used for
the interpolation in ISDeC. This phenomenon is explained in Section 1.4. Con-
sequently, for m = 4 we observe an order sequence for the iteration error of
O(h?), O(h*), O(h%), O(hT),.... For higher polynomial degrees m, the order
reduction occurs in later steps, for m = 5 the fourth iterate has an iteration
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Figure 2.2: ISDeC, m = 5 Gaussian points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.3: ISDeC, m = 6 Gaussian points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.4: ISDeC, m = 7 Gaussian points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.5: ISDeC, m = 8 Gaussian points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.7: ISDeC, m = 5 Radau points, based on Stérmer/Verlet for Kepler problem.

error of O(h?), for m = 6 the fifth iterate is reduced to order O(h''), and so on,
cf. Section 1.4. The results are given in Figures 2.6 to 2.10.

Finally, we take a look at the invariants which are preserved by the exact flow. We
only consider ISDeC based on Gaussian points here. It is well known that both
the Stérmer/Verlet method and the fixed point of ISDeC, defined by collocation
at Gaussian points, retain the angular momentum (2.3) exactly [13] (this is not
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Figure 2.8: ISDeC, m = 6 Radau points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.9: ISDeC, m = 7 Radau points, based on Stérmer/Verlet for Kepler problem.
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Figure 2.10: ISDeC, m = 8 Radau points, based on Stérmer/Verlet for Kepler problem.

true for the fixed points defined by Radau points). This is not precisely the case
for the ISDeC iterates, however. Table 2.1 shows that the angular momentum is
preserved up to terms of the order of the iteration error (as compared with the
fixed point p*). The example in Table 2.1 was computed for m = 6, and it is clear
from Figures 2.1 to 2.5 that for other degrees of the interpolation polynomial the
same conservation properties of the ISDeC iterates must hold.

hm Stérmer ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
2m /25 0 273.10797 6.03.1079%7 2.89.1079% 3.95.10°9% 6.10-1079% 5.18.10° 95
27 /50 0 227-107°2 236-10"% 3.11-107% 1.24-107°  4.96-10797 1.22.10798
27/100 0 1.43-1079 452-1079 1.47-1079 1.54-107°® 1.56-1071° 9.93-10"13
27 /200 0 890-10-9 7.39.10-97 6.00-1070° 1.59.10—'1 4.03.10-1% 6.48.10-17
27 /400 0 5.55-1079 1.17.107°% 237.10"'! 1.58.107'* 9.99.10"!% 4.02.10"2!
2m /800 0 347-10797 1.83.10710 927.1071% 1.555.10717 245.1072! 246.1072°

27 /1600 0 2.17-107°% 286-107!2 3.62-10716 1.51-1072° 5.98.1072% 1.51-10"29
2m/25 3.59 4.68 6.54 8.32 10.26 12.05

22:// 15000 3.99 5.71 7.72 9.65 11.63 13.58
4.01 5.93 7.94 9.92 11.92 13.90

;zﬁgg 4.00 5.98 7.98 9.97 11.98 13.98
o /800 4.00 6.00 8.00 9.99 11.99 14.00
o /1600 4.00 6.00 8.00 10.00 12.00 13.99

Table 2.1: Error in the angular momentum for ISDeC based on Stérmer/Verlet, m = 6.

If we consider the preservation of the Hamiltonian (2.1), the situation is different.
Here, theory predicts that the Hamiltonian is preserved by the Stérmer/Verlet
method only up to terms of order h2. However, this order estimate is not affected
by the length of the time interval considered, see [14]. The fixed point p* of
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ISDeC preserves the Hamiltonian exactly if Gaussian points 7;; are used for the
interpolation [13]. As for the angular momentum, this is not the case for Radau
points. Consequently, in Table 2.2, we give the errors in the Hamiltonian of the
numerical solution computed by the Stérmer/Verlet method, and of the ISDeC
iterates when m = 6 Gaussian points are used. Note that in the particular case of
the Kepler problem (2.1), the asymptotic quality of the Stérmer/Verlet method
is even better than the worst case theoretical estimate. The important point,
however, is that the ISDeC iterates preserve the Hamiltonian only up to terms of
the order of the iteration error.

hm Stormer ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
2r/25 | 2.53-107%% 9.44.107°1 1.87.10701 1.16-10701 151.10702 252.1079% 2.12.10"%
27/50 | 4.86-107% 9.10-10792 8.09-10-9 1.33.1079 5.12-1079 2.16-107% 5.32.10708
27/100 | 7.61-10797 5.79.1079 1.58.107% 6.34.1079 6.46.10798 6.86.10710 4.37.107!2
27/200 | 1.19-10-98 3.61-10-94 2.59.10-96 2.559.10-%% 6.70.10—!! 1.78.10-!3 2.86.10-16
27/400 | 1.85-1071% 2.25.107%% 4.10.107°® 1.02-107'° 6.63-10"'* 4.41-.107'7 1.78.10"2°
2m/800 | 2.89-10712 1.41.1079 6.42.10710 4.01.1071% 6.50-10717 1.08-10720 1.09.10-24

27/1600 | 4.52-10714 8.79.107°% 1.00.107'1 157.10715 6.36.-10720 264.1072¢ 6.65.10"2°
S:ﬁg 5.70 3.37 4.53 6.45 8.20 10.19 11.96
o /100 6.00 3.97 5.68 7.71 9.63 11.62 13.57
21/200 6.00 4.00 5.93 7.94 9.91 11.91 13.90
o /400 6.01 4.00 5.98 7.99 9.98 11.98 13.97
27 /800 6.00 4.00 6.00 7.99 9.99 12.00 14.00

o/1600 6.00 4.00 6.00 8.00 10.00 12.00 14.00

Table 2.2: Error in the Hamiltonian for ISDeC based on Stormer/Verlet, m = 6.

2.1.1 Composition Methods

In this section, we consider the higher-order composition methods described in
Section 1.3, where we use the Stérmer/Verlet method as the basic scheme. Again,
we solve the Kepler problem (2.1). In Figures 2.11 to 2.17 we give the results
for Suzuki’s method and ISDeC based on interpolation at Gaussian points, see
Section 1.3. Again, the top row of each figure gives the iteration errors and error
of the fixed point on a logarithmic scale, while the bottom row gives the resulting
empirical orders. For the left columns, Version A of the Stérmer/Verlet method
is used as the basic scheme, and the right columns give the analogous results for
the dual Version B (which shows the same behavior as Version A).

We observe that the basic scheme has order 4 as predicted, and the increase in
the order of the iteration error is at least 2 in every step. This of course implies
that the order of the global error increases in the same way up to the theoretical
maximum given by the order of the fixed point, Gaussian collocation. For m =
6, m = 7 and m = 8, the first ISDeC iterate yields a numerical approximation of
order 8, even. Thus, the increase in the attainable order is 4 in the first step, but
drops back to 2 in the further course of the iteration. For m = 9 and m = 10, we
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Figure 2.11: ISDeC, m = 4 Gaussian points, based on Suzuki for Kepler problem.
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Figure 2.12: ISDeC, m = 5 Gaussian points, based on Suzuki for Kepler problem.

observe order sequences O(h*), O(h®), O(h'?), O(h'*), O(h'®),.... These order
sequences become plausible in the light of the discussion in Section 1.4. For some
of the iterates, we observe even higher orders than predicted by our theoretical
considerations, however.

Figures 2.18 to 2.24 give the same results, where the interpolation is based on
Radau points. The iteration error shows a different asymptotic behavior as that
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Figure 2.13: ISDeC, m = 6 Gaussian points, based on Suzuki for Kepler problem.
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Figure 2.14: ISDeC, m = 7 Gaussian points, based on Suzuki for Kepler problem.
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Figure 2.17: ISDeC, m = 10 Gaussian points, based on Suzuki for Kepler problem.

observed in the case of Gaussian points. This can be attributed to the fact that
Radau points do not satisfy (1.29). While the results for Radau points can fully
be explained by the considerations in Section 1.4, the more favorable behavior
for Gaussian points is not entirely clear.

For Radau points, the increase in the orders of the iteration errors of the respective
ISDeC iterates is generally one in every step, while for symmetric points like
Gaussian points, the increase is two in general, see Section 1.4. If the degree
of the interpolation polynomial is sufficiently large, a faster acceleration in the
convergence order is observed. Namely, for degree m = 5, the first iteration step
yields an increase from order 4 to 6, while for m = 4 only order 5 is obtained.
For m = 6 and m = 7, the increase in the first step amounts to 3 and 4, even
(but the increase drops back to 1 in each of the succeeding steps). For m = 8 we
observe an order sequence O(h?), O(h®), O(h'?), O(h!),.... For m = 9 this is
improved to O(h*), O(h®), O(h!!), O(h'?),.... Finally, for m = 10 we observe
O(h*), O(h®), O(h'?), O(h'3),.... Refer to Section 1.4 for an explanation of this
behavior.

The fixed points have lower orders in the case of Radau points as compared to
Gaussian points, however. This of course limits the maximal attainable order of
the global error as discussed before.

Finally, we discuss the geometric properties of Suzuki’s method based on the
Stormer/Verlet method. The composition method which serves as a basis for
ISDeC preserves the angular momentum, see Table 2.3 and [13]. Unfortunately,
the same does not hold for the ISDeC iterates. As in the case of ISDeC based
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Figure 2.23: ISDeC, m = 9 Radau points, based on Suzuki for Kepler problem.
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Figure 2.24: ISDeC, m = 10 Radau points, based on Suzuki for Kepler problem.

on the Stérmer/Verlet method, this invariant is conserved only up to terms of
the order of the iteration error in general if Gaussian points are used. Recall
that the fixed point p* retains the angular momentum exactly. Table 2.3 shows
the corresponding results, which are even a little more favorable for some of the
iterates than we would expect in general.

hm Suzuki ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
27 /25 0 435.107°7 320-1079% 3.91.10-12 381.-10-1% 1.99.10-1% 3.80.-10"16
27 /50 0 1.73-1079 6.62-1071% 1.90.-1071% 1.59.1071® 1.11.107!° 217.10723
27 /100 0 6.73-107'2 165.10716 1.10.-1071% 7.52.1072% 4.01-10"2% 6.56-10"2°
27 /200 0 2.63-107'% 4.05-10720 6.78-10"2% 1.87-10"2% 1.52-1073° 6.95.1035
2 /400 0 1.03-10716 9.90-1072*% 4.15.1072% 3.08-1073% 5.80-10736 6.73.10"%!
27 /800 0 4.01-10719 242.10727 254-10732 4.79-10738 2.21-107% 6.44.10"%7

27 /1600 0 1.57.1072! 590-1073! 1.55.107%¢ 7.33.107%® 8.44.107%7 6.15.10°53
;Zﬁg 7.97 12.24 11.01 17.87 17.45 24.06
o7/100 8.01 11.97 14.08 17.69 18.08 18.34
o7/200 8.00 11.99 13.99 15.30 18.01 19.85
o740 8.00 12.00 14.00 15.89 18.00 19.98
o /800 8.00 12.00 14.00 15.97 18.00 20.00

o /1600 8.00 12.00 14.00 16.00 18.00 20.00

Table 2.3: Error in the angular momentum for ISDeC based on Suzuki, m = 6.

The Hamiltonian is not preserved in general by Suzuki’s method based on
Stormer/Verlet. This can also be observed in Table 2.4. Again, the iterates pre-
serve the invariant up to terms of an order correlated with the iteration error as

compared with the fixed point.

If instead of Suzuki’s method, we use Yoshida’s method to obtain a fourth order
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hm Suzuki ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
27 /25 1.01-10-1 1.77.10796 1.31.1079 1.41.107'F 1.74.107'2 2.38.10~1 1.58.10"13
27/50 | 2.40-10~1% 6.99.10-9% 2.73.10-12 7.70.10~15 6.52.10"18 4.55.10-19 5.60.10—2!
2r/100 | 5.82-10'% 2.73.10~!' 6.82.10716 448.10"!° 2.75.1072% 1.63.1072%¢ 2.78.10728
2m/200 | 1.42-10722 1.07-10' 1.67.107!° 276.1072% 7.17.1072% 6.18.-10730 2.93.10734
27/400 | 3.46-10726  4.16-107'6  4.09.1072% 1.69-10727 1.19-10732 2.36-1073% 2.84.1040
27/800 | 8.46-10730 1.63-10~'8 9.98-10727 1.03-1073! 1.84-10737 8.99.10"% 2.72.10746

27/1600 | 2.06-1073% 6.35-10721 2.44.10730 6.31-10736 2,82.10742 3.43.107%6 2.59.10752
;”/ gg 12.04 7.98 12.23 10.84 18.03 19.00 24.75
9 "/100 12.01 8.00 11.97 14.07 17.86 18.09 24.26
2“/200 12.00 8.00 12.00 13.99 15.23 18.01 19.86
2”/400 12.00 8.01 12.00 14.00 15.88 18.00 19.98
2”/800 12.00 8.00 12.00 14.00 15.98 18.00 19.99
m/ 12.00 8.00 12.00 13.99 15.99 18.00 20.00
27 /1600
Table 2.4: Error in the Hamiltonian for ISDeC based on Suzuki, m = 6.
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Figure 2.25: ISDeC, m = 4 Gaussian points, based on Yoshida for Kepler problem.

method from the Stérmer/Verlet method, and leave all other algorithmic details
of ISDeC unaltered, we obtain precisely the same results, see Tables 2.25— 2.39.
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Figure 2.27: ISDeC, m = 6 Gaussian points, based on Yoshida for Kepler problem.
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Figure 2.28: ISDeC, m = 7 Gaussian points, based on Yoshida for Kepler problem.

1 10

iteration error
iteration error

107° 1072 107° 1072

[
o

observed order
[y N
(4} o

observed order
[y N
(4} o

[&)]
[&)]

[
o

o
o

10 10 10 10

Figure 2.29: Yoshida, Gauss, m = 8

Figure 2.30: ISDeC, m = 8 Gaussian points, based on Yoshida for Kepler problem.
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As a last example for ISDeC with a high-order composition method as ba-
sic method applied to the Hamiltonian system (2.1), we consider McLachlan’s
method (cf. Section 1.3) based on the symplectic Euler methods (1.11) and (1.12).
We construct a symmetric fourth-order method ¥ for the solution of the neigh-
boring problems (1.2) as described in Section 1.3. In the following figures, the left
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Figure 2.31: ISDeC, m = 9 Gaussian points, based on Yoshida for Kepler problem.
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Figure 2.32: ISDeC, m = 10 Gaussian points, based on Yoshida for Kepler problem.
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Figure 2.33: ISDeC, m = 4 Radau points, based on Yoshida for Kepler problem.
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Figure 2.37: ISDeC, m = 8 Radau points, based on Yoshida for Kepler problem.
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Figure 2.38: ISDeC, m = 9 Radau points, based on Yoshida for Kepler problem.
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columns refer to the scheme as defined by (1.21), while for the right columns, the
results for the dual methods are given, where the roles of ¢ and ¢* are exchanged.
The order sequences given in Tables 2.40— 2.53 for McLachlan’s method are the
same as those observed for Suzuki’s and Yoshida’s methods.

Remark: Acceleration techniques for geometric integrators are also considered in
[6]. Particularly, the conservation properties of the iterates obtained by extrap-
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Figure 2.43: ISDeC, m = 7 Gaussian points, based on McLachlan for Kepler problem.
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Figure 2.44: ISDeC, m = 8 Gaussian points, based on McLachlan for Kepler problem.
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Figure 2.45: ISDeC, m = 9 Gaussian points, based on McLachlan for Kepler problem.
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Figure 2.46: ISDeC, m = 10 Gaussian points, based on McLachlan for Kepler problem.
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Figure 2.47: ISDeC, m = 4 Radau points, based on McLachlan for Kepler problem.
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Figure 2.49: ISDeC, m = 6 Radau points, based on McLachlan for Kepler problem.
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Figure 2.50: ISDeC, m = 7 Radau points, based on McLachlan for Kepler problem.
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Figure 2.51: ISDeC, m = 8 Radau points, based on McLachlan for Kepler problem.
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olation from Yoshida’s method are considered. It turns out that the favorable
geometric properties of the basic method are not retained, the invariants are only
conserved up to terms of a certain asymptotic order. The approximation quality
is quite high, however. Consequently, the situation is quite similar to the one
discussed here.

2.2 The Exponential Midpoint Rule

In this section, we consider ISDeC based on the exponential midpoint rule, which
is a second order method defined for linear homogeneous ODEs

y(t) = A()y() (2.4)

by
@10 (y) = exp (RA(L + h/2)) y. (2.5)

If ISDeC based on the exponential midpoint rule is applied to smooth problems,
the same behavior as for the Stérmer/Verlet method can be observed. We demon-
strate this for an example taken from [7], where

0 t  —0.4cos(t)
At) = —t 0 0.1t : (2.6)
0.4 cos(t) —0.1¢ 0
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The system matrix is skew-symmetric, and the flow of the differential equation
preserves the Euclidean norm. Consequently, for our initial values

y(O) = (0’ 0, 1)Ta

the exact solution stays on the unit sphere.

For our numerical experiments, we consider the solution on the interval [tg, tenq] =
[0, 5] and record the error at te,g = 5. Since we do not have two different versions
of the basic method as in the case of Stérmer/Verlet, in the figures below we give
the results for different degrees m of the interpolation polynomial for ISDeC in
one figure, the left column referring to the lower degree. Again, the top row of
each figure gives the iteration error of the respective ISDeC iterates, while the
bottom row shows the corresponding empirical orders of the iteration errors.

To summarize, the behavior for ISDeC based on the exponential midpoint rule is
the same as for Stérmer/Verlet. The order of the iteration error increases in steps
of two for Gaussian points, while the speed of this convergence acceleration is
slower for Radau points. The highest attainable convergence order as compared
with the true solution is limited by the accuracy of the fixed point p*, which
is a collocation solution at Gaussian points and Radau points, respectively. The
results are given in Figures 2.54 to 2.59.
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Figure 2.54: ISDeC, m = 4 and m = 5 Gaussian points, based on EMR for (2.6).

The geometric properties of the ISDeC iterates based on the exponential midpoint
rule when applied to (2.6) are comparable to the results for the Stérmer/Verlet
method applied to Hamiltonian systems. The basic approximation shares the
property of the exact flow that the Euclidean norm of the solution is preserved.
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Figure 2.59: ISDeC, m = 8 Radau points, based on EMR for (2.6).
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This does not hold for the ISDeC iterates in general: The norm is preserved up
to terms of the order of the iteration error as compared with the fixed point if
Gaussian points are used. This behavior is clearly visible from Table 2.5, where
the results for m = 6 are given. Note that the fixed point, Gaussian collocation,
preserves the Euclidean norm precisely, see [13].

hm [ EMR ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
1/5 0 323-107%% 1.40-10-19 3.18.10-1% 1.76.10-15 8.52.10"1® 3.29.10~%0
1/10 0 2.06-1079 152.107!2 887-10716 2,00-1071® 1.94.1072! 1.68.10724
1/20 0 1.29-1071° 211-107'% 3.11-1071® 2,02-1072' 4.63-1072% 9.73.1072°
1/40 0 807-107'?2 3.19-10-'6 1.18-102° 1.99-10-?4 1.12.10~28 5.85.10733
1/80 0 5.04-10-13 4.94.10~18 4.58.10-2% 1.94.-10~27 2.74.-10732 3.56.1073%7
1/160 0 3.15-107' 7.71-102° 1.78-10~2% 1.90-1073° 6.69.10736 2.17.10~%!
1/320 0 1.97-107%% 1.20-102 6.97-1072% 1.85.1073% 1.63.1073° 1.32.107%
11/ o 3.97 6.53 8.49 9.78 12.10 14.26
1720 4.00 6.17 8.16 9.95 12.03 14.08
1740 4.00 6.05 8.04 9.99 12.01 14.02
1780 4.00 6.01 8.01 10.00 12.00 14.00
1/160 4.00 6.00 8.01 10.00 12.00 14.00
1/320 4.00 6.01 8.00 10.00 12.00 14.00

Table 2.5: Error in the norm for ISDeC based on EMR, m = 6.

To conclude the discussion of the exponential midpoint rule, we give numerical
results for the fourth order composition methods discussed in Section 1.3, where
the exponential midpoint rule serves as the basic method ®. In this case, we
consider the Suzuki and the Yoshida method!. The order results are again the

ISince the exponential midpoint rule itself cannot be written as a composition of first order
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Figure 2.61: ISDeC, m = 6 and m = 7 Gaussian points, based on Suzuki for (2.6).

same as in Section 2.1, where the Stormer/Verlet method served as the basic
method. From the discussion in Section 1.4 we indeed expected the results to
be independent from the choice of the basic scheme. The iteration errors and

associated orders are given in Figures 2.60 to 2.75.

methods, we have no analogue to McLachlan’s method in this section.
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Finally, we give the errors in the norm of the numerical approximations. Table 2.6
shows that Suzuki’s method based on the exponential midpoint rule preserves the
norm exactly, thus reflecting an important property of the exact flow. The ISDeC
iterates, however, only preserve the Euclidean norm up to terms of the order of
the iteration error with respect to the fixed point, Gaussian collocation.

hm Suzuki ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
1/5 0 466-1071T 201.1071% 851.1071% 354.10718 1.45.10720 5.77.10 %
1/10 0 1.86-107' 201-1076 213-1071° 2.23-10722 2.28-10"2% 228.10728
1/20 0 731-107'6 1.97.-10~'9 5.24-10-2% 1.37-1026 3.50-10730 8.78.10734
1/40 0 2.86-10-'®% 1.93.10-22 1.28-10~26 8.37-10-3! 5.36-10-3% 3.36-10739
1/80 0 1.12-10720 1.89-1072® 3.13-10730 5.11-1073% 8.18-10740 1.28.10-%
1/160 0 4.37-1072 1.84.1072% 765-1073* 3.12.1073%% 1.25.107% 4.89.10730
1/320 0 1.71-10725 1.80-10731 1.87-10737 1.90-104% 1.90-10=4° 1.86.105%
11//150 7.97 9.97 11.96 13.95 15.96 17.95
1720 7.99 9.99 11.99 13.99 15.99 17.99
1740 8.00 10.00 12.00 14.00 15.99 18.00
1780 8.00 10.00 12.00 14.00 16.00 18.00
1/160 8.00 10.00 12.00 14.00 16.00 18.00
17320 8.00 10.00 12.00 14.00 16.01 18.00

Table 2.6: Error in the norm for ISDeC based on Suzuki for (2.6), m = 6.

2.3 Exponential Integrators for Unsmooth Prob-
lems

In addition to geometric integration for Hamiltonian systems, one major moti-
vation in our search for novel error estimation methods for differential equations
with a special structure was the numerical solution of the Schrodinger equation.
The characteristic feature of the ODEs related to the method of lines is a steep
vector field resulting from the discretization of the unbounded Laplacian in the
right-hand side [19]. Unfortunately, we found that defect correction does not work
well for unsmooth problems of this type. In this last section, we want to give some
examples illustrating that ISDeC works for these problems in principle, yet poses
prohibitive restrictions on the step size for time integration.

2.3.1 The Test Equation
The simple test equation
y(t) = Ay(t), y(0) =1, (2.7)

where A € C, demonstrates the behavior and the range of applicability of IS-
DeC which is also observed for more complicated equations like the Schrédinger
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equation after space (semi-)discretization. The exact solution of (2.7) is

y(t) = eM.

To investigate the behavior of ISDeC, we can use a simplification which is possible
due to the simplistic nature of the test equation. To exclude the effects of the
choice of the basic method, we use the exact flow

B (y) = "y (2.8)

as the basis for ISDeC. It turns out that even in this scenario, the modulus
of A determines the performance of ISDeC. Clearly, we may conclude from the
observations made here, that we cannot expect a more favorable behavior if a
numerical approximation is used as the basis for ISDeC. Particularly, if instead
of the test equation (2.7) a more general linear system (2.4) is solved, where the
system matrix A has large eigenvalues, we cannot hope to obtain better results

than for (2.7) where )\ is of the order of magnitude of the largest eigenvalues of
A.

In Tables 2.7 to 2.9, we give the empirical convergence orders (with respect to
the exact solution) of the ISDeC iterates computed at te,q = 1, when the exact
flow (2.8) is used as the basic solution method and m = 6 Gaussian points
7;,; are used to define (1.3). We compare the behavior for A =i, A = 100i and
A = 1000i. The reason for choosing purely imaginary eigenvalues is the presence of
purely imaginary eigenvalues in the Hamiltonian operator in the time-dependent
Schrodinger equation after space discretization [19], see also Section 2.3.2. Note
however that the results are similar for A real. We observe that for A = i, the
ISDeC iterates indeed show increasing orders of convergence up to the theoretical
limit defined by the fixed point of the iteration. Since we are — untypically — using
the exact flow as the basic method, the first few iterates show a higher convergence
order than should be expected in general, see Table 2.7. If in contrast we consider
A = 100i, similar results are observed only when the step sizes are very small.
For realistic h, the iteration does not seem to converge, while for very small A
the expected behavior that was observed for smooth problems is restored, see
Table 2.8. For A = 1000i, we do not observe proper asymptotics at all. In that
case, the step size would have to be chosen prohibitively small.

2.3.2 Exponential Splitting for the Schrodinger Equation

As a last result, we demonstrate that the unfavorable behavior which we encoun-
tered for the test equation (2.7) for large modulus of A is also observed for more
general systems with large eigenvalues. To this end, we consider the Schrodinger
equation for one degree of freedom in one space dimension,

9y(t, z)

iT = AY(t,z) + V(x)y(t, ©), (2.9)
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hm exact ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
1 0 1.05.-10799 6.50-1071F 459.107% 1.68.107° 1.70-10°° 1.70-10" 13
1/2 0 4.16-107'2 261-1071% 336-10716 3.89-10717 4.22-10717 4.22-10717
1/4 0 1.63-10~'4 1.03-10~'5 3.00-10' 6.84-102!' 1.03-10~2°0 1.03-10-20
1/8 0 6.38-10-17 4.02-10-'8 286-1022 9.66-10—25 2.53-10"2¢ 2.53-10—%
1/16 0 249-107' 1.57.10720 2.78.10°2% 2.81-10%2" 6.17-1072% 6.17-10"28
1/32 0 9.74-10722 6.14.1072% 271.1072® 3.20.107%0 1.51-.1073! 1.51.103!
1/64 0 3.81-1072¢ 2.40.10725 2.64.1073! 3.24.1073% 3.68-10735 3.68-.1073°%
1}2 7.98 7.96 10.42 12.08 11.98 11.98
1/ 8.00 7.99 10.13 12.47 12.00 12.00
178 8.00 8.00 10.03 12.79 11.99 11.99
1/16 8.00 8.00 10.01 8.43 12.00 12.00
1732 8.00 8.00 10.00 9.78 12.00 12.00
1/64 8.00 8.00 10.00 9.95 12.00 12.00
Table 2.7: Convergence of ISDeC applied to (2.7) with A =i, m = 6 Gaussian points.
hm | exact 1SDeC 1 1SDeC 2 ISDeC 3 ISDeC 4 1SDeC 5 1SDeC 6
1 0 9.38.-10701  4.47.1079%  1.74.10795 6.29.10796 223.10798 7.89.10709
1/2 0 5.86-10101 1.72.10t03 353.10%t%4 5.92.10705 8.77.10%06 1.20.10+08
1/4 0 1.38-10792 9.58.10%03  4.47.10%05 1.60-10797 4.75.10108 1.22.10+10
1/8 0 2.49-107%*  3.10.10%02 267.10103 1.86-107%% 1.12.10%%% 6.08.10105
1/16 0 5.94.10792 256.10792 2.70.10792 2.78.10792 2.77.10792 2.77.10792
1/32 0 7.74-107%% 521.107% 1.38.107% 1.25.1079% 1.24.107%% 1.24.10705
1/64 0 3.61-1079 220-10"97 581-10799 3,51-1079° 3.51-10-9° 3.51-10—99
1}2 0.68 1.38 2.30 3.41 4.67 6.04
174 -1.24 -2.48 -3.66 -4.76 -5.76 -6.67
178 2.47 4.95 7.39 9.75 12.05 14.29
1/16 8.71 13.56 16.59 19.35 21.95 24.39
1732 6.26 8.94 10.93 11.12 11.13 11.13
1764 7.74 7.89 11.21 11.80 11.79 11.79

Table 2.8: Convergence of ISDeC applied to (2.7) with A = 100i, m = 6 Gaussian points.

hm exact ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6
1/5 | 5.18.107%% 8.20.10T9T 1.76.10F0% 2.45.10706 351.1070% 513.10710 7.50.10F12
1/10 | 1.91-107%2 8.84.10102 3.91.10%%% 1.16.10108 2,62.10%0 4.86.10%12 7.78.101!4
1/20 | 1.37-107%2 7.58-10702 2.88.101% 7.49.10t°7 1.52.-10%'0 261-10T'2 3.95.101'
1/40 | 1.78-10%2 7.69-10702 2.96.101% 7.59.10107 1.47.10%10 229.10712 3.01.101!*
1/80 | 1.55-10=%2 1.04-10703 5.40.10105 1.87.1010% 4.87.10%10 1.02.10*!3 1.77.10%!5
1/160 | 1.34-.107%2 1.15.10%0% 6.56.10705 251.107%8 7.18.10%!0 1.65.10%13 3.14.10*+15
1/320 | 1.22.107%2  6.58.10102  2.16.1079 4.74.10%t°7 7.80-107%° 1,03.10+12 1.13.10"™
11// 150 -1.88 -3.43 -4.47 -5.57 -6.22 -6.57 -6.70
1720 0.48 0.22 0.44 0.63 0.79 0.90 0.98
1740 -0.38 -0.02 -0.04 -0.02 0.05 0.19 0.39
1780 0.20 -0.44 -0.87 -1.30 -1.73 -2.16 -2.56
1/160 0.21 -0.16 -0.28 -0.42 -0.56 -0.69 -0.83
17320 0.14 0.81 1.60 2.40 3.20 4.00 4.80

Table 2.9: Convergence of ISDeC applied to (2.7) with A = 1000i, m = 6 Gaussian points.

where A denotes the Laplacian, which for this simple case satisfies

0*y(t, z)

AY(t,x)

0x?

b
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and the potential V' is chosen as
V(z) =1 — cos(x).

For space (semi-)discretization we use pseudospectral methods ([18], [19], [23])
with N = 16 and N = 256 spatial grid points in the interval [—m, 7], respec-
tively. The size of the (purely imaginary) eigenvalues of the system matrix of the
resulting system of ODEs depends critically on the step size used in the space
discretization. Tables 2.10 and 2.11 give the results of our numerical tests. The ta-
bles give the convergence order of the global error at tenqg = 1, where for both test
runs we used the initial values 0(02) defined in [18] (with a different random vector,
naturally). The basic numerical method is exponential splitting, a second order
scheme which is introduced and analyzed in [18]. For the ISDeC iteration we use
m = 6 Gaussian points in the interpolation. Table 2.10 demonstrates that ISDeC
can be used successfully for the Schrodinger equation if the space discretization
induces moderate eigenvalues of the system matrix in time integration. For suffi-
ciently small step sizes the convergence order of the ISDeC iterates is enhanced
up to the limit given by the fixed point similarly as in Table 2.7. If the number of
spatial grid points increases, however, the results become unacceptable, the error
of the ISDeC iterates even increases drastically in the course of the iteration. No
significant improvement is observed for decreasing h.

hm exact ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6

1 1.49-10792  1.23.10701  7.71.10702  4.70.1070% 2.39.10706 1.02.1079% 3.70.10T0°
1/2 | 3.39-10-9% 1.18.10701 7.68.10702 4.45.10104 2.24.10106 9.76.10107 3.71.10109
1/4 | 8.36.-107%4 1.10.10701 7.77.10702 3.92.107%4 1.68.10706 7.11.10%07  3.02.10%09
1/8 | 2.08.107%¢ 1.07.10701 1.32.10703 1.18.10705 8.11.10706 4.51.10%08 2.11.10%10
1/16 | 5.21-1079 245.10700 1.29.10702 556.107%% 2.04.107%5 6.55.101% 1.87.10108
1/32 | 1.30-107% 4.70.1070% 4.12.1079 536.107°% 542.1079 544.1079 543.10703
1/64 | 3.25.10796  1,02-1079¢ 7.97.1079 3.54-10796 3.35.10796 3.33.1079 3.33.10°96

1/128 | 8.13-107°7 5.14.107°7 3.13.107°% 1.44.107%° 1.02-107%° 1.01-107%° 1.01-107%°
1/256 | 2.03-10-°7 2.12.10-%% 1.32.10-10 756.10-13 263-.10-13 267-10-13 2.68.10~13

1

1/2 2.14 0.06 0.01 0.08 0.09 0.06 -0.00
1/4 2.02 0.10 -0.02 0.18 0.42 0.46 0.30
1/8 2.01 0.04 -0.76 -1.59 -2.27 -2.67 -2.80
1/16 2.00 2.13 3.36 4.41 5.31 6.11 6.82
1/32 2.00 9.03 14.93 19.98 25.17 30.17 35.00
1/64 2.00 5.53 9.01 10.56 10.66 10.67 10.67
1/128 2.00 7.63 7.99 11.26 11.68 11.69 11.69
1/256 2.00 7.92 7.89 10.90 11.92 11.89 11.88

Table 2.10: ISDeC, Schriodinger eqn. with N = 16 spatial grid points, m = 6 Gaussian points.
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hm exact ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 ISDeC 6

1 7.20-10703  1.89.10F01  267.10705 4.22.107%% 583.10F1 7.48.10717 1.01.10F22
1/2 | 1.94.1079% 1.84.10T01 2.58.10%05 3.99.10109 528.10713 6.06-101!7 6.18.1012!
1/4 | 4.58.107%% 1.84.10101 2,64.101%% 4.10.10%%9 5.30.10%!3 577.10717 5.42.10%2!
1/8 | 1.37-107% 1.85.10101 2.58.10%%% 3.91.10%09 5.02.10*!% 546.10117 5.12.1012
1/16 | 2.43-107° 1.84.10101  2,62.101% 4.09.10%09 5.39.10%!3 6.04-10117 5.84.10%2!
1/32 | 6.05-107%6 1.82.10101  2,60.101% 4.03.10%09 5.30.10%! 5.94.1017 5.75.10%2!
1/64 | 1.51-1079  1,79.10701  2,59.107%5 4,04-10%%° 5.34.10%13 5.97.-107 57610121

1/128 | 3.78-107°7 1.78-.10101  255.10705 3.81-10799 4.81-10%! 5.15-10M17  4.78.10F2!
1/256 | 9.44-107°%  1.68.10101  255.10705 3.75.10799 4.64.10%!3 4.85.10117 4.38.1012!

1

1/9 1.89 0.04 0.05 0.08 0.14 0.30 0.71
144 2.08 0.00 -0.03 -0.04 -0.01 0.07 0.19
1/8 1.74 -0.01 0.03 0.07 0.08 0.08 0.08
1/16 2.50 0.01 -0.02 -0.06 -0.10 -0.15 -0.19
1732 2.01 0.02 0.01 0.02 0.02 0.02 0.02
1?64 2.00 0.02 0.01 -0.00 -0.01 -0.01 -0.00
1/128 2.00 0.01 0.02 0.08 0.15 0.21 0.27
1/256 2.00 0.08 0.00 0.02 0.05 0.09 0.13

Table 2.11: ISDeC, Schrédinger eqn. with N = 256 spatial grid points, m = 6 Gaussian points.



Appendix A

Auxiliary Results

Lemma 2 Let y(t) be an (m + 2) times continuously differentiable function on
[to,to + mh]. Let p(t) be the interpolation polynomial of degree < m which is
defined by

p(t0+jh) =y(t0 +jh), j=0,...,m, (Al)

and let q(t) be any polynomial of degree < m which satisfies

¢ (to + pjhm) = y'(to + pjhm), j=1,...,m. (A.2)
If p; satisfy
“ m
ij =5 (A.3)
j=1

then for the m-th derivatives of p(t) — q(t) we have

p™(t) = ¢"™(t) = O(h?). (A4)

Proof. Using the Lagrange interpolation formula with the Lagrange polynomials

ST —i

LJ(T):H T
i—0 J
]

and the Taylor expansions

y(to +jh) =
we obtain

p(to + 7h) Zyto—i-jh (1)

gy Ly (1)
— L m+2
z; i +]§_I e (T + 00

0
hk ky(k (to) hm+1y(m+1)(t0) it m ' I
= ; X + (m+1) T —H(T—j) + O(h™™).
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In the last step we have used > 7", j*L;(t) = 7% and the fact that the inter-

polation polynomial Y77 5™ L;(7) of 7™*! at the nodes 0,...,m is given by
7t —T[7Lo(T — ). Similarly, we obtain

m—1 m
hkrk (k+1) t hm (m+1) t
(ltosrhy = S TV ) | By ) <m - pjm)> +O(m)

k! m)

and

= hErky k) (¢
q(to +7h) = Q(t0)+z+(o)
k=1 '

+

Ay (1)

+ (m 1] (Tm+1 - (m+1) /tT H(U - pjm)da) + O(R™*?)

by integration. Using

™ 4 m
d—mH(T—j) = (m+1)!7'—m!2j = (m+1)! (7_%)
™ <
and
dm—l m
(m+1)d7_m_1 H(T—pjm) = (m+1)! (T—ZCJ),
j=0

and noting that the O(h™*?) remainder terms from above are of the form
™2 R(7, h) with smooth functions R(7, h) (which are actually polynomials in

7 of degree < m, with %R(T, h) = O(h %)) we conclude

™ (tg 4+ 7h) — ¢'™ (tg 4+ 7h) = hy™ (¢ (— - Z pj) + O(h?),

from which the statement of the lemma follows. O
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