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A proof and further details can be found in [7].
The full set of requirements on methods for nonlinear DAEs has to be taken into

account when constructing practical methods. A test implementation Glimda [8]
has been developed that employs General LInear Methods for Differential Alge-
braic equations. The code implements a variable-stepsize, variable-order approach,
where methods of order 1,2 and 3 are used.

The preliminary code Glimda based on general linear methods seems to be
competitive with BDF and Runge-Kutta solvers. By construction Glimda has
advantages for MNA equations. Hence there is strong evidence that general lin-
ear methods can be used efficiently for solving differential algebraic equations in
integrated circuit design.
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Collocation Methods for Index-1 DAEs with a critical point

Ewa B. Weinmüller

(joint work with O. Koch, R. März, D. Praetorius)

Model problem. We investigate the convergence behavior of collocation schemes
applied to approximate solutions of index-1 DAEs, including the case when a
critical point of 1−A type is present, see [6] and [5] for more technical details. The
underlying analytical problem is the linear system of DAEs,

(1) A(t)(D(t)x(t))′ +B(t)x(t) = g(t), t ∈ (0, 1],

where A(t) ∈ Rm×n, D(t) ∈ Rn×m, B(t) ∈ Rm×m and g(t), x(t) ∈ Rm with
n ≤ m. We assume that D(t) ≡ D is a constant matrix and that the matrices
A, B and the inhomogeneity g are at least continuous, A, B, g ∈ C[0, 1].
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Example: The following two dimensional problem belongs to class (1) and has a solution
x1(t) = −
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We study systems (1) with properly stated leading term, cf. [1]. This means that
A and D are well matched, i.e., kerA(t) ⊕ imD(t) = Rn, t ∈ (0, 1], and there
exists a projector function R ∈ C1(0, 1] which realizes this splitting. Here, we
assume that ker(A(t)) = {0}, t ∈ (0, 1] and im(D) = Rn. Let Q0 be a projector
onto N0 := ker(A(t)D) ≡ ker(D) and let us define P0 := I − Q0. In our case,
since the matrix D is constant, R = I for t ∈ (0, 1], and Q0, P0 are constant, we
regard all projections as extended to the interval [0, 1]. In order to describe the
boundary/initial conditions which are necessary and sufficient for (1) to be well-
posed, we decouple the system using techniques from [1]. To this end, we introduce
the matrices G0(t) := A(t)D, G1(t) := G0(t) + B(t)Q0 and allow a critical point
at t = 0, where G1 may become singular, i.e. G1(t) is non-singular on (0, 1]. The
decoupled system reads:

u′(t) +DG−1
1 (t)B(t)D−u(t) = DG−1

1 (t)g(t), t ∈ (0, 1],(3)

Q0x(t) = −Q0G
−1
1 (t)B(t)D−u(t) +Q0G

−1
1 (t)g(t), t ∈ (0, 1],(4)

where u(t) := Dx(t) are differential and Q0x(t) are algebraic components of the
solution x(t), and D− is a reflexive generalized inverse of D. We now rewrite (3)
and obtain a system of singular ODEs with a singularity of the first kind1,

(5) u′(t) − 1

t
M(t)u(t) = f(t), t ∈ (0, 1],

where M(t)/t := −DG−1
1 (t)B(t)D−, f(t) := DG−1

1 (t)g(t). Let us assume that
M ∈ C1[0, 1] and f ∈ C[0, 1]. Then we can use the theory given in [3] to augment
(5) by a set of initial2 conditions necessary and sufficient for u ∈ C[0, 1]. In case
that M(0) has zero eigenvalues or eigenvalues with negative real parts, u needs
to satisfy u(0) = γ, where γ ∈ kerM(0). Finally, if the right-hand side in (4) is
continuous on [0, 1], then there exists a unique, continuous solution of the following
IVP:

A(t)Dx′(t) +B(t)x(t) = g(t), t ∈ (0, 1],(6)

Dx(0) = γ, Q0x(0) = lim
t→0

(−Q0G
−1
1 (t)B(t)D−γ +Q0G

−1
1 (t)g(t)) =: Q0x0.(7)

Collocation scheme. We now turn to the numerical treatment of the IVP (6),
(7). We first introduce a mesh ∆ := (τ0, τ1, . . . , τN ), with hi := τi+1 − τi, i =
0, . . . , N − 1, τ0 = 0, τN = 1, such that hi ≤ h. In each subinterval Ji = [τi, τi+1],
we place m distinct collocation points, τi < ti,j < τi+1, j = 1, . . . ,m. We ap-
proximate x(t) by a function p(t) = pi(t), t ∈ Ji, where p ∈ Bm, and Bm is

1Singularity of the first kind arises when we assume that t = 0 is an algebraically simple zero
of the determinant of G1(t).

2We restrict our attention to IVPs in this talk.
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the Banach space of globally continuous, piecewise polynomial functions of de-
gree ≤ m equipped with the maximum norm. The defining equations for p are,
j = 1, . . . ,m, i = 0, . . . , N − 1,

A(ti,j)Dp
′(ti,j) +B(ti,j)p(ti,j) = g(ti,j),(8)

Dp(0) = γ, Q0p(0) = Q0x0.(9)

Note, that the numerical method is applied to the IVP (6), (7) in its original form.
We first show that p ∈ Bm exists and is unique. Decoupling (8) yields a collocation
scheme for the differential components of p, q(t) := Dp(t), and it follows from [4]
that q(t) ∈ Bm exists and is unique. Then, it is easy to see that Q0p(t) ∈ Bm

exists and is unique and consequently, this also holds for p(t) ∈ Bm.

In order to derive the error bounds for the solution p, we introduce an error
function e ∈ Bm defined by, j = 1, . . . ,m, i = 0, . . . , N − 1,

e′(ti,j) = x′(ti,j) − p′(ti,j), e(0) = 0.(10)

Standard results for interpolation, see [2], yield the estimate for the interpolation
error e′(t) = x′(t) − p′(t) + P0O(hk) + Q0O(hl). Integrating this expression, we

obtain e(t) = x(t) − p(t) + t(P0O(hk) +Q0O(hl)) provided that P0x ∈ C k̃+1[0, 1]

or equivalently Dx ∈ C k̃+1[0, 1] and Q0x ∈ C l̃+1[0, 1], where k := min{k̃,m} and

l := min{l̃, m}. Now, the error e satisfies the collocation scheme

A(ti,j)De
′(ti,j)+B(ti,j)e(ti,j)= ti,jB(ti,j)(P0O(hk)+Q0O(hl)), e(0) = 0

which we again decouple. According to [4] we have ediff := De(x) = tO(hk), and
we can use this information to estimate Q0e(t). Finally, x(t)− p(t) = O(hmin{l,k})
follows. For details, the reader is referred to [5].
Numerical experiment. Finally, we present some numerical results to illustrate
the theory.
Example: For the test problem specified in (2) the algebraic components and the differen-
tial components are given by Q0x(t) = (x2(t), x2(t))

T and P0x(t) = (x1(t)− x2(t), 0)
T =

(Dx(t), 0)T , respectively. Moreover,

G0(t) = � 1 −1
1 −1 � , G1(t) = � 1 1

1 t + 1 � , G−1
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t
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The inherent singular IVP has the form u′(t) − (−4 − 2t)/t u(t) = (7t + 5)e5t, u(0) = 0

and u(t) = te5t. Since u(t), x2(t) ∈ C∞[0, 1], we have k̃ = l̃ = ∞, and thus we expect to
see the order of convergence m being the stage order of the method. In the table below
we display the estimated convergence order for m = 2 equidistantly spaced collocation
points, left column, and m = 2 Gaussian points, right column. The maximum norm of
the global error has been calculated at the meshpoints τi.
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Mesh Error for x, equidistant coll. Error for x, Gaussian coll.

N error order const. error order const.

10 1.322e + 01 9.932e + 00
20 3.345e + 00 2.0 1.271e + 03 2.511e + 00 2.0 9.572e + 02
40 8.409e − 01 2.0 1.307e + 03 6.310e − 01 2.0 9.819e + 02
80 2.110e − 01 2.0 1.320e + 03 1.583e − 01 2.0 9.906e + 02
160 5.291e − 02 2.0 1.324e + 03 3.970e − 02 2.0 9.936e + 02
320 1.327e − 02 2.0 1.326e + 03 9.954e − 03 2.0 9.948e + 02

Mesh Error for u, equidistant coll. Error for u, Gaussian coll.

N error order const. error order const.

10 7.122e − 01 3.172e − 02
20 1.729e − 01 2.0 7.847e + 01 2.029e − 03 4.0 2.937e + 02
40 4.290e − 02 2.0 7.152e + 01 1.275e − 04 4.0 3.165e + 02
80 1.070e − 02 2.0 6.935e + 01 7.984e − 06 4.0 3.240e + 02
160 2.675e − 03 2.0 6.871e + 01 4.992e − 07 4.0 3.262e + 02
320 6.685e − 04 2.0 6.853e + 01 3.120e − 08 4.0 3.269e + 02

The numerical results are in good agreement with the theory. The superconvergence

does not hold in general although it can be observed for the differential components here.

However, if we rerun the test for m = 3 Gaussian points, we see the O(h4) convergence

for u again, and not the superconvergence behavior O(h6), see [5].

Conclusion. The concept of a properly stated leading term and the associated
decoupling technique are powerful tools which we were able to utilize in the con-
vergence proof of a collocation method applied to approximate solutions of singu-
lar DAEs. The results presented here will be subject to generalizations, such as
variable matrix D, general spectrum of M(0), nonlinear homogeneity, and more
involved types of critical points.
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Stochastic DAEs in circuit simulation

Renate Winkler

One of the challenges of the downscaling in the production of electronic chips is
the small signal-to-noise-ratio. In several applications the noise influences the sys-
tem behaviour in an essentially nonlinear way such that linear noise analysis is
no longer satisfactory and transient noise analysis, i.e., the integration of noisy


