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Abstract. We investigate collocation methods for the efficient solution
of singular boundary value problems with an essential singularity. We
give numerical evidence that this approach indeed yields high order so-
lutions. Moreover, we discuss the issue of a posteriori error estimation for
the collocation solution. An estimate based on the defect correction prin-
ciple, which has been successfully applied to problems with a singularity
of the first kind, is less robust with respect to an essential singularity
than a classical strategy based on mesh halving.

1 Introduction

We consider boundary value problems with an essential singularity (or singular-
ity of the second kind),

t*2'(t) = f(t,2(t), te(0,1], (1)
9(2(0),2(1)) =0, (2)
z € C[0,1], 3)

where a > 1. f and g are smooth functions of dimension n and p, respectively. In
general, p < n holds and condition (3) provides the additional n—p relations that
guarantee the well-posedness of the problem. Analytical results for problems of
this type have been discussed in detail in [1]. For the numerical treatment, we
assume that an isolated solution of (1)—(3) exists.

Boundary value problems with an essential singularity are frequently encoun-
tered in applications. In particular, problems posed on infinite intervals are often
transformed to this problem class. Here, we would like to mention a problem in
foundation engineering discussed in [2], which is of use for the design of oil rigs
above the ocean floor (see also Example 1 below). Models from fluid dynamics
are another source for the problems we are interested in: The Blasius equation
describes the laminar boundary layer on a flat plate, see for example [3]. The
von Karman swirling flows result from the Navier-Stokes equations for a sta-
tionary, axisymmetric flow of a viscous incompressible fluid occupying the half
space over an infinite rotating disk, cf. [4]. Finally, one approach to the classical
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electromagnetic self-interaction problem ([5]) leads to a boundary value problem
with a singularity of the first kind (o = 1 in (1)) at ¢t = 0 and a singularity of
the second kind due to the formulation on an infinite interval.

In this paper, we investigate numerical methods which may be successfully
applied to obtain high-order solutions for boundary value problems of the type
(1)—(3). Particularly, in §2 we examine the empirical convergence order of col-
location methods at either equidistant or Gaussian points. These methods work
satisfactorily when they are applied to boundary value problems with a singu-
larity of the first kind, see [6]. Moreover, collocation has been implemented in
the MATLAB code sbvp for the latter class of problems, see [7]. This code also
uses an a posteriori error estimate based on defect correction, which has been
analyzed for singularities of the first kind in [8]. In §3, we show that this esti-
mate does not work for problems with an essential singularity. A modification of
this idea is not satisfactory either, as demonstrated in §3.2. However, a strategy
based on mesh halving is shown to be a promising candidate for an asymptoti-
cally correct error estimate for the collocation solution of (1)—(3), see §3.3.

2 Convergence of Collocation Methods

In this section, we discuss polynomial collocation with maximal degree m € IN for
problems on grids A := {t; ; = t; + pjh, i =0,...,N—=1, j=0,..., m}U{tn},
where h := 1/N, t; := hi and 0 = pg < p1 < ... < pm < 1. This means
that we approximate the analytical solution by a continuous collocating func-
tion p(t) := pi(t), t € [ti,tiy1], ¢ = 0,...,N — 1, where p; is a polynomial of
maximal degree m, which satisfies the differential equation (1) at the collocation
points t; j, 1 =0,...,N —1, j=1,...,m, and the boundary conditions. In this
setting, a convergence order of O(h™) can be guaranteed for regular problems
with appropriately smooth data. However, when the collocation points are suit-
ably chosen (Gaussian points) even a (super-) convergence order O(h?™) holds
at the mesh points t;, see [9].

For problems with an essential singularity, we observed that the convergence
order is at least O(h™), for numerical evidence see [10]. We illustrate this con-
vergence behavior in Table 1. The results were computed for the problem from
foundation engineering specified in [2],
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where collocation at four equidistant points p; = j/5, j = 1,...,4 was applied.
All computations in this paper were performed using MATLAB 6.1 in IEEE
double precision with relative machine precision EPS = 1.11e—16. In Table 1, h
denotes the step size, § denotes the maximal global error at the grid A (computed
with respect to a reference solution which was determined for h = 1/320), and
p is the empirical convergence order determined from the values of § for two
consecutive step sizes.  and p denote the respective quantities computed for
the error at the mesh points ¢;, 1 = 0,..., N, only. Note that for our choice of
collocation points, no superconvergence effects are to be expected.

Table 1. Convergence order of collocation at four equidistant points for Example 1

h 1 p b D

1/10 2.06e—17 2.06e—17

1/20 4.26e—18 2.27 4.26e—18 2.27

1/40 1.65e—19 4.69 1.65e—19 4.69

1/80 6.22e—21 4.73 6.22e—21 4.73
1/160 3.84e—22 4.02 3.74e—22 4.06

Collocation at Gaussian points is affected by order reductions as compared
to the classical superconvergence order. We demonstrate this observation using
a simple test example,

Example 2

2(t) = —a(t) + et — (6)
z(1) =e, (7)

with the exact solution z(t) = e!. We conjecture that in general, the convergence
order for Gaussian points is m + v, where 0 < v = v(a) < 1, and v decreases
with increasing «. Table 2 shows the results for & = 3 and collocation at four
Gaussian points. Note that the maximal error is assumed throughout at mesh
points, which implies that the convergence order p is no higher than the uniform
convergence order p.

Remark 2.1. The analysis of the box scheme given in [11] implies that its order
of convergence is 1 + v, where 0 < v < 1. Since the box scheme is equivalent
to collocation at Gaussian points with m = 1, this is consistent with the above
conjecture.

3 A Posteriori Error Estimation

Here, we discuss several error estimation strategies for the numerical solution
computed by collocation. First of all, we present the results obtained with our



Table 2. Convergence order of collocation at four Gaussian points for Example 2

h B p ) P

1/10  2.12e—09 2.12e—09

1/20 9.07e—11 4.55 9.07e—11 4.55

1/40 3.92e—12 4.53 3.92e—12 4.53

1/80 1.71e—13 4.52 1.71e—13 4.52
1/160 5.99e—15 4.84 5.99e—15 4.84

MATLAB code sbvp. The graphs in Figure 1 demonstrate that the error estimate
implemented in sbvp, see §3.1 below, is completely unreliable for Example 2 with
a = 3. The value of the error estimate (denoted by “sbvp”) is of the order of
magnitude of 10%°, while the value of the exact global error (“exact”) is of the
order of magnitude of the round-off error.
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Fig. 1. Exact global error and the error obtained by sbvp for Example 2

3.1 Defect Correction Using the Backward Euler Method

The error estimation routine implemented in sbvp is based on the defect cor-
rection principle and uses the backward Euler method as an auxiliary scheme.
This estimate was introduced in [6] and has been analyzed for problems with
a singularity of the first kind in [8]. The numerical solution p(t) obtained by
collocation is used to define a “neighboring problem” to (1)-(3). The original
and the neighboring problem are solved using the backward Euler method at the



points t; 5, 7 =1,...,m and t; my1 := ti41, ¢ = 0,..., N — 1. This yields the
grid vectors §; ; and m; ; as the solutions of the respective schemes

§ij —&ij—1 _ 1
tij —tij-1 17

f(ti,j7§i,j)7 and (8)

i — Mg j—1 1 =
s = o f(t, i) + dig,s 9)
tij — tij—1 ti

where d; ; is a defect term defined by

m+1

- ti;) —plti ;- 1

3= M) Ps ) 5h o L g ). (0
k=1 i,k

Here, the coeflicients a;; are chosen in such a way that the quadrature rules
given by

1 ti; m+1
e | e Y gl
tij —tij—1 Ju ;4 1

have precision m + 1. The quantities &; ; — 7; ; serve as estimates for the global
error of the collocation solution at the grid points, which is O(h™) in general.
For regular problems and for a certain class of problems with a singularity of
the first kind, this error estimate was shown to satisfy max; ; |(2(t; ;) — p(ti,;)) —
(65 —mi)| = O(™*1), cf. [6] and [8].

The failure of this error estimate for problems with an essential singularity
can clearly be attributed to the fact that the backward Euler method does not
work for this problem class. It is clear from Table 3 that the method applied to
Example 2 with a = 3 is rapidly divergent.

Table 3. Numerical results for the backward Euler method for Example 2

h B p ) P

1/10  7.20e+00 7.20e+00

1/20 5.93e+01 —3.04 5.93e+01 —3.04

1/40 1.73e+05 —11.5 1.73e+05 —11.5

1/80 8.70e+09 —15.6 8.70e+09 —15.6
1/160 5.99e+17 —26.0 5.99e+17 —26.0

The failure of the backward Euler method for Example 2 is apparently due to
the instability of the numerical integration for this terminal value problem. For
the solution of the associated difference scheme, terms of the form (1 —h/t$) are
accumulated. For a > 1, these terms are unbounded for ¢; — 0. This possibly
explains why this scheme works perfectly well for the cases where a = 1, but
fails for an essential singularity. An additional drawback of the backward Euler



scheme is the condition number of the associated system of linear algebraic
equations, which becomes intolerably large for decreasing step size h. In Table 4
the condition number with respect to the maximum norm, “cond”, and its order
of growth, “p cond” are recorded. The norm of the system matrix “norm” is
O(h=3) = O(h~%), while the norm of the inverse “norm inv” increases very
rapidly.

Table 4. Conditioning of the backward Euler method for Example 2

h cond p cond norm pnorm norm inv

1/10 6.99e+05 1.00e+03 6.99e+-02
1/20 3.28¢+09 —12.2 8.00e+03 —3.00 4.09e+05
1/40 1.55e+15 —18.9 6.40e+04 —3.00 2.42e+10
1/80 9.60e+23 —29.2 5.12e+05 —3.00 1.88e+18
1/160 5.10e+37 —45.6 4.10e+06 —3.00 1.25e+31

3.2 Defect Correction Based on the Box Scheme

When comparing the observations for the backward Euler method in §3.1 with
the results for collocation, see §2, we may conjecture that a possible remedy
for the observed instability could be to use symmetric schemes. In Table 5, we
give the condition numbers “cond” for the box scheme which have the growth
order p cond = —q. This is the same as for the norm “norm” of the system
matrices (not displayed). In contrast to the backward Euler scheme, the inverses
are bounded in this case, see “norm inv”.

Thus, we propose the following alternative to the error estimate described
in §3.1: Instead of solving the original and the neighboring problems using the
backward Euler method, we use the box scheme to compute the quantities &; ;
and 7; ;.' Unfortunately, the result is not fully satisfactory either. The error of
the error estimate seems to have the order m + v, where again ~y decreases for
growing a. We illustrate this observation in Table 5, where again Example 2
with a = 3 is discussed. The underlying numerical method is collocation at four
equidistant points, and we consider the error at the mesh points only. The error
of the error estimate “4 err” decreases faster than the error of the basic method
§ (which is O(h*)), but the difference in the asymptotic orders is not sufficiently
large to guarantee a reliable error estimate.

3.3 Error Estimate Based on Mesh Halving

The negative results for error estimation strategies based on the defect correction
principle are the motivation to consider a computationally more expensive error

! For this purpose we use the defect d; ; from (10) for the evaluation of the right-hand
side at the point (t;,;—1 + ts,;)/2.



Table 5. Error of the error estimate based on the box scheme for collocation at four
equidistant points and conditioning of the auxiliary scheme for Example 2

h é é err p err cond p cond norm norm inv

1/10 1.11e—08 5.35e—09 2.28e+03 8.00e+03 2.85e—01
1/20 7.02e—10 2.26e—10 4.47 1.68e+04 —2.88 6.40e+04 2.62e—01
1/40 4.38¢e—11 1.02e—11 4.55 1.28e+05 —2.93 5.12e+05 2.50e—01
1/80 2.73e—12 4.42e—13 4.53 9.98e+05 —2.96 4.10e+06 2.44e—01
1/160 1.72e—13 1.90e—14 4.54 7.89e+06 —2.98 3.28e+07 2.41e—01

estimate based on mesh halving. In this approach, we compute the collocation
solution at m equidistant points on a grid A with step size h and denote this
approximation by pa(t). Subsequently, we choose a second mesh A, with step
size h/2. On this mesh, we compute the numerical solution based on the same
collocation scheme to obtain the collocating function pa,(t). Using these two
quantities, we define

op

E(t) == T

(P4, (t) — pa(t)) (11)

as an error estimate for the approximation pa(t). Assume that the global error
4(t) of the collocation solution can be expressed in terms of the principal error
function e(t),

5(t) = e(t)h™ + O(h™*1), (12)

where e(t) is independent of h. Then obviously the quantity £(t) satisfies £(t) —
d(t) = O(h™*1). Consequently, for collocation at an even number of equidistant
points, this error estimate is asymptotically correct. The convergence results for
collocation methods, see §2, suggest that this is a promising approach.
However, numerical results given in [10] indicate that the higher order term
in (12) is rather O(h™*7) with v < 1 in case of an essential singularity. Here, we
only give? the numerical results for the simple test problem Example 2, and refer
the reader to [10] for further results. In Table 6, the error of the error estimate
“§ err” is given together with its asymptotic order “p err”, where the underlying
numerical solution is computed by collocation at four equidistant points. We
can see that, similarly as for the box scheme (Table 5), the error of the error
estimate has order m + v with v =~ 0.5. However, the absolute quality of the
error estimate is sightly better than for the box scheme. The error of the error
estimate should be compared with the exact global error § at the whole grid and

at the mesh points (9).

2 For problems where a reference solution has to be used to compute the “exact”
global error, the empirical orders observed are negatively affected by the influence
of the error introduced by this latter approximation. Consequently, the asymptotic
results for these examples may be less clear.



Table 6. Global error for collocation at four equidistant points and error of the error
estimate based on mesh halving for Example 2

h é B é err p err § err p err

1/2 8.80e—06 8.80e—06 2.90e—07 1.61e—07

1/4 5.41e—07 4.65e—07 1.16e—08 4.65 1.16e—08 3.80

1/8 3.02e—08 2.77e—08 3.75e—10 4.95 3.75e—10 4.95
1/16 1.82e—09 1.71e—09 1.6le—11 4.54 1.6le—11 4.54
1/32 1.11e—10 1.07e—10 6.93e—13 4.54 6.93e—13 4.54
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