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Abstract. In this paper we present an overview of analytical results and
numerical methods for singular boundary value problems for ordinary dif-
ferential equations with a singularity of the first kind. We also comment
on some applications where these problems typically occur. Special at-
tention is paid to the analysis of shooting methods, where the associated
initial value problems are solved by the acceleration technique known as
Iterated Defect Correction (IDeC) based on the backward Euler method,
and on direct discretization using collocation schemes. Convergence, er-
ror estimation and mesh selection are discussed for both approaches.
Moreover, we study the fixed point convergence of the IDeC iteration,
where the fixed point corresponds to a collocation solution.

1 Analytical Properties

In this paper, we discuss nonlinear singular boundary value problems of the first
order with a singularity of the first kind,

Z'(t) = MT(t)z(t) + f(t,2(t)), te(0,1], (1.1a)
BaQZ(O) + Bbgz(l) = 62 s (llb)
z € C[0,1] , (1.1c)

where z, f are vector-valued functions of dimension n, M is an n x n matrix',
By, Bys are r x n matrices and (3, is a vector of dimension r < n. Analytical
properties of the boundary value problem (1.1) were studied in full detail in [10].
It turns out that (1.1c) reduces to n—r linearly independent conditions that z(0)
has to satisfy, and these are suitably augmented by (1.1b) to yield a well-posed
problem?. Thus, we usually write (1.1) in its equivalent form consisting of (1.1a)
and the n linearly independent conditions

B,z(0) + Byz(1) = . (1.14d)

For a well-posed problem we now make the following assumptions:

! Throughout the paper we assume M € C'[0,1] and write M (t) = M +tC(t), C €
o, 1].
2 It should be noted that every solution of a well-posed problem satisfies M z(0) = 0.



1. Equation (1.1) has an isolated solution z € C[0,1] N C'(0,1]. With this
solution and a p > 0 we associate the spheres

Sp(2(t) == {y € R" : |2(t) —y| < p}

and the tube
T, = {(t,y) : t € [0,1], y € S,(=(1))}.
of(t,z)

2. f(t,z) is continuously differentiable with respect to z, and =52 is contin-
uous on T},.

For this situation, the following smoothness properties hold, for a proof see [10]:

Theorem 1.1. Let f be p times continuously differentiable on T, and M €
CP*10,1]. Then

1. z € CP(0,1].
2. If all the eigenvalues of M have monpositive real parts, then z € CPT1[0,1].
3. Let o4 denote the smallest of the positive real parts of the eigenvalues of M
and ng the dimension of the largest Jordan box associated with the eigenvalue
0 in the Jordan canonical form of M. Then the following statements hold:
— Forp<oy <p+1, |2Pt)(1)] < const.t7+ P~ 1(|In(t)["0 ! + 1).
— Foro, =p+1, |2 (t)] < const. (|1n(t)[™ + 1).
— Foro. >p+1, zeCP0,1].

Note that the spectrum of M not only influences the smoothness of the solution
of (1.1), but also determines how the boundary conditions have to be chosen to
yield a well-posed problem3.

2 Applications

Singular problems arise in a wide range of research fields. Problems as differ-
ent as the solution of differential equations posed on unbounded intervals (see
[8]), the computation of connecting orbits or invariant manifolds for dynamical
systems ([17]), differential-algebraic equations ([18]) or Sturm-Liouville eigen-
value problems ([6]), are in the scope of techniques for singular boundary value
problems. Our special focus is on two types of applications.

% In particular, for initial value problems (where B, = 0), the absence of purely imag-
inary eigenvalues or eigenvalues with positive real parts, is necessary in order to
formulate a problem having a unique, continuous solution z(¢). In this case, the
condition Mz(0) = 0 is necessary and sufficient for z € CJ[0,1] and provides n — r
linearly independent conditions which the initial value z(0) has to satisfy. Here, r is
the dimension of the kernel of M. This solution is unique iff the r X r matrix Ba2E
is nonsingular, where E is a basis of the kernel of M. For terminal value problems
(where B, = 0), we require the absence of purely imaginary eigenvalues, eigenvalues
with negative real parts or a multiple eigenvalue 0, where the associated block in the
Jordan canonical form is not diagonal. In that case, we need to pose n linearly in-
dependent terminal conditions at ¢ = 1 to obtain a unique solution. For a discussion
of these special cases of (1.1), see [12].



In the simulation of the run-up and run-out of dry-flowing avalanches, a
leading-edge model due to McClung et al., cf. [19], is used to describe the
avalanche’s dynamics. This yields an initial value problem for a scalar first order
ordinary differential equation with a singularity of the first kind which describes
the velocity v(t) of the avalanche’s leading edge. Our aim is the development of
an efficient numerical solution method for the associated initial value problem.

The density functional theory developed by Walter Kohn reduces some prob-
lems of computational material science to the single atom case with a suitably
defined external potential, see [4]. In this context, the radial Schrédinger equa-
tion has to be solved. This is a singular ordinary differential equation of the
second order with a singularity of the first kind, which can be equivalently ex-
pressed in the form (1.1a). Here, our main goal is the speed-up of numerical
computations by applying approximation methods especially suited for singular
problems, as an alternative to the approach currently adopted in standard codes.

3 Shooting Methods and Iterated Defect Correction

It was shown in [14] that shooting methods (see for example [1]) are stable for
singular problems and retain the full convergence orders when the associated
initial value problems are well-posed. However, this is a severe restriction in case
of singularity — it is clear from §1 that a special structure of the spectrum of the
matrix M is required (in order to obtain either a well-posed initial or terminal
value problem). This means that the shooting approach can only be applied to
solve a subclass of the possible problem range.

The crucial point for the numerical realization of these methods is the stable
integration of the associated initial value problems, cf. [1]. Moreover, the common
choice of shooting points for multiple shooting, see for example [20], may be
unfavorable in this case. Whenever shooting points are allowed to approach
t = 0, order reductions may occur, see [2]. However, when the first shooting
point is suitably fixed, the usual strategies for the mesh selection seem to be
applicable to the rest of the interval, where the initial value problems can be
solved by standard methods like embedded explicit Runge-Kutta pairs. Since
many standard methods suffer from order reductions near the singularity, we
need a different strategy for the first interval. Our strategy for this region close to
the singular point is the so-called “Iterated Defect Correction” Method (IDeC),
which we describe below.

Consider (1.1a) with the (well-posed) initial condition z(0) = 8 € ker M.
Moreover, we assume to know a first approximation ZLO] = zn = (20,.-.,2N)
obtained by some discretization method ¢, on an equidistant grid A, :=
(T0,.--,7N), Ti = ih, h = %. If we choose N = mN; with m € IN fixed and
N; € IN, we can use a continuous piecewise polynomial function pl°] (t) of maxi-
mal degree m to interpolate ZLO]. Using this interpolating function, we construct
a “neighboring problem” associated with the original problem and solved exactly



by pll(¢),

v =20 4 sy +d¥0, te©1], G
y(0) =pl°0) =5, (3.1b)

where
4ty = (1)~ 00 — (e, ) (32

The fact that in general plo)’ ¢ C[0,1] does not affect the following consider-
ations. We now solve (3.1) by the same numerical method ¢, and obtain an

approximate solution pg)] for pl°l(¢). This means that for the solution of the
neighboring problem (3.1) we know the global error which we can use to esti-
mate the unknown error of the original problem and utilize this information to
improve the solution* zj,

)=z + (Rh(p[o]) —PE?]) . (3.3)

We use these values to define a new interpolating function pl!!(¢) by requiring
pll(t;) = zj[-l], j=0,...,N. Now pl'l(t) is used to define a neighboring problem
in the same manner as for (3.1), where again the exact solution is known, and
the numerical solution of this neighboring problem yields a further correction

of zp, z;f] = zp + (Rh (pm) —p%]). Clearly, this procedure can be iteratively
continued.
If the backward Euler method is used as the basic method ¢ for the IDeC

iteration, the level of accuracy of the successive iterates is improved as for regular
problems. This result is formulated in the following theorem?, cf. [15]:

* Rn(2) := (2(to), ..., 2(tn)) for a continuous function z.

® The result implies that we are in a position to use shooting methods in conjunction
with IDeC based on the backward Euler method to obtain numerical solutions with
an arbitrary convergence order for those problems (1.1) which can be equivalently
expressed as initial value problems. Moreover, the successive updates also represent
an asymptotically correct error estimate for the previous IDeC iterate which enables
error control mechanisms that are robust with respect to the singularity. However,
if we used a basic method of higher order, we could hope to apply IDeC even more
efficiently: For regular problems, using a Runge-Kutta method of order p results
in an order sequence O(h?), O(hF),.... Unfortunately, for singular problems this
is not the case. It was shown in [16] that the use of neither the box scheme, the
trapezoidal rule nor the computationally cheap forward Euler method yield the de-
sired improvement in the accuracy in general. For terminal value problems, where
eigenvalues with positive real parts occur, the size of these eigenvalues influences the
order sequences that can be achieved. Under certain circumstances, however, a fixed
point property of IDeC makes it possible to compute a high order solution even if
the classical order sequence is not observed. This is the subject of §4.



Theorem 3.1. Consider the IDeC method based on the backward Euler rule
and on piecewise interpolation with polynomials of degree m for the numerical
solution of a singular initial value problem. For the approzimations obtained in
the course of the iteration,

[l _ — [l ity i 3
e = Bu(llni= s, | ==(t)| =00*), j=0....om=1, (3.4)

holds provided that f and M are sufficiently smooth. In this case (polynomials
of degree m are used for the interpolation), further iteration does not increase
the asymptotic order of the approzimation in general.

4 Fixed Points of IDeC and Collocation Methods

Apart from considering the asymptotics of IDeC as the discretization parameter
h tends to zero, it also seems natural to investigate the asymptotic behavior
of the iterates ZLJ] for j — oo. This may be especially attractive in the case
where the classical improvement of the convergence order (with respect to h) is
not observed, but nonetheless the IDeC iterates eventually tend towards a high
order solution. Therefore, in this section we study the fixed point property of
IDeC based on the backward Euler rule and the box scheme. Here, we do not
restrict ourselves to the case of initial value problems, but also consider two-
point boundary value problems. The definition of IDeC is fully analogous in this
case. First, we require some notation. For a (not necessarily equidistant) grid A
we assume N = mN; as in §3. We denote

ti := Tim, tij = Tim+j = t; +pj(ti+1 - ti); 0<pp<---<pm <1 (41)

forj=1,...,m, i =0,...,N; — 1. Fixed points of IDeC can be characterized
as follows.

Theorem 4.1. A grid vector zj, is the fized point of IDeC based on the backward

Euler method on an equidistant grid Ap iff z}; is the solution of a collocation

method of order m on a grid of the form (4.1) with p; = L, j=1,...,m. If the
— 21

box scheme serves as basic method, the same holds with p; = =—=, j =1,...,m.

Proof. Obviously, z; is a fixed point of IDeC iff the defect (3.2) vanishes in the
points where the right-hand side of (1.1) is evaluated for the numerical method
©n- See also [9]. O

Theorem 4.1 does not state under which circumstances the IDeC iteration indeed
approaches a fixed point. The following examples and some theoretical consid-
erations show, however, that we may quite frequently expect such convergence
to take place.

Consider the singular boundary value problem

L 1/(01 0
2'(t) = 7 (1 0) 2(t) + <3tcos(t) _p sin(t)) , te€(0,1], (4.2a)

(8(1)> 0+ <(1)8> 2= (sino(l)> ) (4.2b)



with exact solution z(t) = (21(t), 22(t))T = (tsin(t), tsin(t) + t* cos(t))T. Since
here the eigenvalues of M are £1, there exists no equivalent well-posed initial
value problem, and consequently, Theorem 3.1 is not applicable. Indeed, the
order sequence of IDeC based on the backward Euler method and a Zadunaisky
polynomial of degree 6 reduces to O(h), O(h?), O(h?),..., see Table 1. The
reasons why such order reductions occur were examined in [16].

Table 1. Order sequence of the backward Euler method for (4.2)

h erro Po err; p1 errs P2 errs p3
0.0833 2.6e—02 8.9e—03 1.0e—03 1.3e—03
0.0417 1.2e—02 1.09 2.3e—03 1.95 2.1e—04 2.28 3.4e—04 1.89
0.0208 6.0e—03 1.03 5.8e—04 1.98 5.2e—05 1.97 8.7e—05 1.96
0.0104 3.0e—03 1.01 1.4e—04 1.99 1.4e—05 1.85 2.2e—05 1.98

If we continue the IDeC iteration, however, we find that eventually a fixed point
is approached. This can be observed in Table 2, where ||z£f] - zkj_l]Hh is given
for four different step-sizes and some values of j. Note that the fixed point is
approached faster for smaller h. From Theorem 4.1 it is clear that this fixed

point is a collocation solution with a convergence order O(h®).

Table 2. Fixed point convergence of the backward Euler method for (4.2)

iterate j h =0.1667 h =0.0417 h =0.0104 h = 0.0025
1 1.3e—01 1.5e—02 3.5e—03 8.6e—04

5 7.0e—03 5.9e—04 3.8e—05 2.4e—06

10 2.3e—04 1.0e—05 6.1e—07 3.8e—08

15 1.4e—05 7.7e—07 4.7e—08 3.0e—09

20 6.7e—07 3.6e—08 2.2e—09 1.4e—10

25 3.5e—08 1.9e—09 1.1e—10 7.2e—12

Tables 3 and 4 give the same information on the order sequence and the fixed
point convergence for the problem

, 1/01 0
2t = t (0 0) 2(t) = <9t cos(3t) + SSin(3t)> , t€(01], (4.3a)

(8 é) 0+ ((1) 8) )= <c080(3)> : (4.3b)

with exact solution z(t) = (cos(3t), —3tsin(3t))”. In this case the box scheme is
used as the basic method for IDeC. It turns out that the classical order sequence
is not observed in this case either, although M has a double eigenvalue 0 and the
problem is equivalent to a well-posed initial value problem. Why IDeC fails in
this case and even the basic order may be reduced by a logarithmic term (which
is apparently the case in Table 3) is explained in [16]. Although the first two



iterations fail to improve the order of the solution (Table 3), we suddenly observe
the convergence order O(h%) after the third iteration step. Table 4 shows that at
least in the asymptotic regime a fixed point was reached (up to roundoff errors).
It is clear from Theorem 4.1 why the reached level of accuracy is O(h%) — the
fixed point of the iteration coincides with a collocation method of this order.

Table 3. Order sequence of the box scheme for (4.3)

h erro Po err; p1 errs P2 errs p3
0.0833 3.4e—02 1.7e—03 8.8e—05 4.7e—05
0.0417 1.0e—02 1.70 4.4e—04 1.93 1.3e—05 2.8016 4.6e—07 6.65
0.0208 3.1e—03 1.75 1.1e—04 1.97 3.2e—06 2.0032 6.6e—09 6.13
0.0104 8.9e—04 1.79 2.8e—05 1.99 8.0e—07 1.9905 1.3e—10 5.63

Table 4. Fixed point convergence of the box scheme for (4.3)

iterate 5 h =0.1667 h =0.0417 h =0.0104 h =0.0025

1 1.4e—01 1.4e—02 1.2e—03 9.7e—05
5.4e—03 6.0e—04 3.8e—05 2.4e—06
1.8e—04 1.7e—05 1.1e—-06 7.1e—08
1.1e—05 2.3e—08 9.0e—11 8.3e—12
1.6e—08 2.2e—11 3.7e—12 8.9e—12
7.4e—13 1.7e—12 3.9e—12 9.1e—12

ST W N

Finally, we are going to analyze the application of the IDeC iteration based
on the backward Euler method to the linear initial value problem with a constant
coefficient matrix,

S (t) = %z(t)+ 1), te©1], (4.42)
z(0)=0 . (4.4b)

We assume that only one polynomial of degree m is used for the interpolation®.

We choose a starting vector ZELO] = (B, Zgo]’ ceey z£2]), where 220] = (ZEO], . 27{2])

are arbitrary vectors. Again we denote by plf! (t) the interpolant of z,[zo] and
define the defect and neighboring problem as in (3.2) and (3.1). We now use

the numerical solution pg?] of (3.1) to “improve” the solution z, obtained by the
backward Euler method. Using a representation of the solution given in [13], we
find

0]

[0]
i —Pj

zj[-l] =zj+z

6 This means that the analysis is relevant for coarse step-sizes, but the behavior near
the singularity is described for an arbitrary step-size.



J M -1 m
- <I—?> oWzl j=1,...m, (4.5)

where the weights Wi, are defined in such a way that

, 1 «—
P (t)) = - Z Wizl
s=0

Formula (4.5) describes an affine mapping 220] — ZE]. Analogously, we can write

2 = 5, (M) + g (M) (4.6)

For the analysis of (4.6) we use the usual definition of an analytical matrix

function p(M),
1

P00 = 3= [ ear-antan, (4.7)

where I' is a sufficiently smooth closed positively oriented curve enclosing all
eigenvalues of M, cf. [7]. Now, S, ()\) is a matrix defined by’

i i -1 . .
_21:11_[1@:1.(1_%) Wllj> I<i<j<m, )
(SmW)ij = § 61 = iy [y (1= 2)7 Wy + Ty (1-2)7 2,
I<j<i<m

)

and g, () is given by

@mmnzijﬁQ—%)Umw—zgi@—%)lquanwm.

J
=1 k=l =1

Since M has no eigenvalue with positive real part, I' can be chosen such that
(1 — X\/k)~! is analytical for all k € IN and therefore the above definitions are
meaningful. For moderate m (which is the case relevant in practice), the matrix
Sm(A) can easily be analyzed. For m = 2,...,14 its spectral radius can be
computed using MAPLE. It turns out that all eigenvalues of S;,,(\) are equal to
zero and thus the matrix is nilpotent of index at most m. By computing the
Jordan canonical form for m = 2,...,6 it could be verified that the index is
indeed equal to m. Consequently, using the reasoning from [7, Lemma VII.3.13],
it follows that the iteration (4.6) converges to the fixed point

5= 3 8L (Mg (M)
=0

" Here, 6;; is the Kronecker symbol.



in a finite number of steps® for any starting vector ZLO].
Fixed point convergence can be also observed for nonlinear problems. As an
example consider the “Emden differential equation”,

2(t) = % <g _11> o) — <t2;(t)> , te(0,1], (4.80)
2(0) = (é) , (4.8b)

with exact solution z(t) = (1/4/1+#2/3,—t>/(3\/(1 +2/3)3))T. In Table 5
the results for the backward Euler method are shown. Note that, according to
Theorem 3.1, a 6th order approximation is obtained after 5 steps of the IDeC
procedure. The asymptotic quality of further iterates does not improve, and
the fixed point (a collocation solution) of the same order O(h%) is gradually
approached.

Table 5. Fixed point convergence of the backward Euler method for (4.8)

iterate j h =0.1667 h =0.0417 h =0.0104 h = 0.0025

1 1.6e—02 5.6e—03 1.5e—03 3.9e—04
4.8e—03 4.0e—04 2.6e—05 1.6e—06
9.7e—04 1.7e—05 3.4e—07 5.1e—09
2.9e—04 3.9e—06 2.0e—08 9.2e—10
2.4e—04 4.0e—07 2.5e—10 3.3e—10
1.2e—04 4.6e—08 3.3e—11 1.3e—10
3.1e—05 7.8e—09 5.9e—12 9.8e—12

~N O U WN

5 Collocation Methods

The results presented in the previous section suggest that high order solutions of
singular boundary value problems can be obtained by means of an IDeC iteration
converging to a collocation solution. In this section we recapitulate convergence
results for collocation schemes applied to singular boundary value problems in
order to demonstrate their robustness with respect to the singularity.

In [11], polynomial collocation with maximal degree m € IN for linear singular
problems is considered. This means that we seek to approximate the analytical
solution by a continuous collocating function p(t) := p;(t), t € [ti,tiy1], @ =
0,...,N; — 1, where p; is a polynomial of maximal degree m, which satisfies the
differential equation (1.1a) in a finite number of points which are given as in (4.1),
and the boundary conditions (1.1d). The resulting relations are called collocation

& We observed that the fixed point is reached after only m — 1 iteratios if the approx-
imation computed by the backward Euler method, zg)] = zn, is used as a starting
vector. Moreover, for the general case (1.1) the use of an arbitrary starting vector
slows down the convergence to the fixed point, but for small & it still takes place.



equations. In this setting, a convergence order of O(h™) can be guaranteed for
regular problems with appropriately smooth data. However, when the collocation
nodes are chosen to satisfy

m

/Olrlw(r)drzo, 1=0,...,v<m, w(t)::H(t—pj), (5.1)

j=1

even a (super-)convergence order O(h™ 1) holds, see [5].

In [11], the treatment is restricted to the case where the initial value problem
equivalent to (1.1) is well-posed. For these problems the following theorem holds
(ng is defined as in Theorem 1.1).

Theorem 5.1. Let M € C™*10,1], f € C™[0,1] and let (1.1) have a unique
solution. Then, for sufficiently small h, the collocation equations have a unique
solution p(t) which satisfies

lp(t) — ()] = O(r™), tel0,1] .

If in addition M € C™%2[0,1], f € C™*[0,1] and (5.1) holds (for 0 < v < m),
then
p(t) = 2()] = O(K™*+!|log(h)[™~"), te[0,1] .

The latter estimate cannot be improved in general.

Theoretical results for singular second order problems given in [21] and the
experimental evidence in [3], indicate that Theorem 5.1 also holds for a general
spectrum of M (with o sufficiently large) and for nonlinear problems.

Moreover, in [3] a novel estimate of the global error, based on the defect
correction idea, is introduced. The numerical solution obtained by a collocation
scheme with p,, < 1 is used to define a neighboring problem similar to (3.1).
The original and the neighboring problem are solved using the backward Eu-
ler method in the (not necessarily equidistant) points ¢;;, j = 1,...,m and
tit1, ¢ =0,..., N1 —1, and the difference between these two solutions is used as
an estimate of the global error of the collocation solution. Instead of the defect
(3.2) evaluated at the points specified above, we use a locally integrated defect?
given by

m+1

iy P2 a) N7 (MO8 4 poenttin)) . 52)

ti; —tij .
i, i,j—1 h—1 ik

with suitably chosen weights o . It turns out that this yields an asymptotically
correct error estimate for regular problems, cf. [3]. (The analogous procedure
based on the “classical” defect d(t; ;) does not provide such a correct estimate.)
There is a strong experimental evidence that this is also the case for singular
problems and a proof of this result is currently in preparation.

Finally, in [3] we also demonstrate that the error estimate described above
can be used as a basis for a mesh selection algorithm that is robust with respect
to the singularity.

% Here, we use the shorthand notation ; m11 = ti11.
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