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Abstract

We discuss the approximation of the meanfield terms appearing
in computations of the multi-configuration time-dependent Hartree–
Fock method for the solution of the time-dependent multi-particle
(electronic) Schrödinger equation by hierarchical matrices. We give
theoretical error bounds for the cross approximation defined by low
rank approximations of admissible matrix sub-blocks, and illustrate
the gain in performance by numerical experiments.
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1 INTRODUCTION

In this paper we discuss numerical aspects of the multi-configuration time-
dependent Hartree–Fock method (MCTDHF) for the approximate solution
of the time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ, (1.1)

where the complex-valued wave function ψ = ψ(x(1), . . . , x(f), t) explic-
itly depends on time t and, in the case considered here, the positions

∗This work was supported by the Austrian Academy of Sciences, APART program.
†Corresponding author; Address: Vienna University of Technology, Institute for

Analysis and Scientific Computing (E101), Wiedner Hauptstraße 8–10, A-1040 Wien,
AUSTRIA; Email: othmar@othmar-koch.org; URL: www.othmar-koch.org

‡Vienna University of Technology, Photonics Institute (E387), Gußhausstraße 27,
A-1040 Wien, AUSTRIA (C. Ede, G. Jordan, A. Scrinzi).

1



2 O. Koch et al.

x(1), . . . , x(f) ∈ R
3 of electrons in an atom or molecule. The Hamiltonian

H is time-dependent and has the form

H(t) :=

f
∑

k=1

(

1

2

(

−i∇(k) +A(t)
)2

+ U(x(k)) +
∑

l<k

V (x(k), x(l))

)

, (1.2)

where

U(x) := −
Z

|x|
, Z ∈ N, (1.3)

V (x, y) :=
1

|x− y|
, (1.4)

A(t) := (a1(t), a2(t), a3(t)). (1.5)

A(t) is a smooth (vector-valued) function of t modeling an ultrafast laser
pulse, and ∇(k) is the nabla operator w. r. t. x(k) only. We will subsequently
briefly denote

T (t) :=

f
∑

k=1

(

1

2

(

−i∇(k) +A(t)
)2

+ U(x(k))

)

.

2 THE MCTDHF METHOD

In MCTDHF as put forward in [6, 15, 16], the multi-electron wave function
ψ from (1.1) is approximated by a function satisfying the ansatz

u =
∑

(j1,...,jf )

aj1,...,jf
(t)φj1 (x

(1), t) · · ·φjf
(x(f), t) =:

∑

J

aJ(t)ΦJ (x, t).

(2.1)
Using (2.1) for the electronic Schrödinger equation, the Pauli principle im-
plies that only solutions u are considered which are antisymmetric under
exchange of any pair of arguments x(j), x(k). This assumption is partic-
ular to the MCTDHF approach, as compared to the multi-configuration
time-dependent Hartree method (MCTDH) proposed in [3, 14] for quan-
tum molecular dynamics. Antisymmetry reduces the number of equa-
tions considerably. Particularly, the assumption implies antisymmetry
in the coefficients aJ . Formally, multi-indices J = (j1, . . . , jf ) vary for
jk = 1, . . . , N, k = 1, . . . , f . Due to the simplifications resulting from the
antisymmetry assumption, only

(

N
f

)

equations for aJ have to be solved in
the actual computations, however.

The Dirac–Frenkel variational principle [7, 8] is used to derive differen-
tial equations for the coefficients aJ and the single-particle functions φj .
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This yields equations of motion [3] for the coefficients and single-particle
functions in (2.1)

i
daJ

dt
=
∑

K

〈ΦJ |V |ΦK〉 aK , ∀J, (2.2)

i
∂φj

∂t
= T (t)φj + (I − P )

N
∑

k=1

N
∑

l=1

ρ−1
j,l V l,kφk, j = 1, . . . , N, (2.3)

where

ψj := 〈φj |u〉 , j = 1, . . . , N, (2.4)

ρj,l := 〈ψj |ψl〉 , j, l = 1, . . . , N, (2.5)

V j,l := 〈ψj |V |ψl〉 , j, l = 1, . . . , N, (2.6)

and P is the orthogonal projector onto the space spanned by the func-
tions φj . Integrals defining the inner products 〈·|·〉 are with respect to all
variables present in both arguments.

3 EFFICIENT COMPUTATION

To make the numerical solution of the equations of motion (2.2), (2.3)
computationally tractable, some care is required in the evaluation of the
right-hand side of the differential equations. The computationally most
demanding part is represented by the evaluation of the meanfield operators
(2.6). This becomes clear when we realize that the computations involve
the evaluation of integrals of the form1

〈φ1(x) |V (x, y)| φ2(x)〉L2(x) φ3(y), (3.1)
〈

φ1(x)φ̃1(y) |V (x, y)|φ2(x)φ̃2(y)
〉

L2(x,y)
, (3.2)

where φi, φ̃i are any single-particle functions from (2.1). To reduce the
computational effort necessary for the evaluation of these terms, a proce-
dure based on discretization and low rank approximation is proposed in [6]
to evaluate the integrals. In [12], bounds for the error introduced by this
approximation are given. In fact, the analysis deals with terms of the form

〈φ1(x)|V (x, y)|φ2(y)〉L2(x,y) =

∫

R3

∫

R3

φ1(x)V (x, y)φ2(y) dy dx, (3.3)

1Subscripts of inner products 〈 · | · 〉 refer to the respective integration variables, and
likewise for norms ‖ · ‖. We will drop the subscripts where the arguments are clear.
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which are however representative for the actually appearing quantities, see
[13] for an exhaustive treatment of extensions of our estimates.

In the present paper, we are going to extend the analysis of [12] to the
case where the meanfield operators are alternatively approximated by H-
matrices. These were first introduced in [10, 11], and compress the data
represented by a matrix of a particular structure by using cluster trees.
Storage requirements and complexity of arithmetic operations involving
H-matrices scale almost linearly with the dimension (that is, linearly with
logarithmic terms) [9]. Appendix A gives a short description of the most
important features of H-matrices we are going to use, see also [13].

Following [6], we choose a discretization in terms of a set of basis func-
tions B = {|i〉 = i(x) : i = 1, . . . , L} and approximate V by

V ≈ Vapp = RVR, (3.4)

where R is the orthogonal projection onto the subspace B spanned by B.
V here is short for the operator on L2 with integral kernel V (x, y). As
basis functions we use real-valued functions with finite support defined on
the spatial grid used to solve (2.2), (2.3). In general, it is natural to use
polynomial finite elements on a suitable subdivision of the spatial domain.
The details may vary from case to case. Here, we want to give error bounds
under the assumption that the space partition is sensible and the choice of
finite elements corresponds with the task at hand. The notions used in the
subsequent presentation are explained for example in [1, 4, 5].

We consider for B the nodal basis for globally continuous finite elements
consisting of piecewise polynomials of degree ≤ m − 1. The resulting fi-
nite elements are conforming, i. e., B ⊆ H1, where we denote by Hm the
Sobolev space of functions which are square integrable together with their
first m weak derivatives. For the theoretical analysis we will always assume
that our spatial subdivision is quasi-uniform, where the diameters of the
elements are proportional to h = 1/L, also referred to as mesh width. In
our numerical experiments in Section 4, we use underlying cylindrical co-
ordinates, where this assumption does not hold uniformly, but nonetheless
the results are along the line of our theoretical analysis.

Now, the projection R used in (3.4) is characterized by

R =

L
∑

i,j=1

|i〉[Q−1]i,j〈j|, (3.5)

with the mass matrix Q given as

Qi,j = 〈i|j〉. (3.6)

Obviously, Q is real, symmetric and nonsingular, and thus Q−1 is also
symmetric. Moreover, we have ‖Q−1‖2 = O(1/h) for the spectral norm
‖ · ‖2 of the matrix Q−1.
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In [12], a bound

|〈φ1(x)|V (x, y)−Vapp(x, y)|φ2(y)〉L2(x,y)| =

{

O(hm) for V bounded,
O(hm−1) for V Coulomb

(3.7)
is shown for the discretization error if φ1, φ2 ∈ Hm.

Subsequently, the discrete operator Vapp is approximated by a suitable
operator whose application is computationally cheap. The global approxi-
mation put forward in [6] is analyzed in [12]. Here, we propose an approx-
imation by a hierarchical matrix instead.

First, we rewrite (3.4) as

Vapp =

L
∑

i,j=1

L
∑

i′,j′=1

|i〉[Q−1]i,i′ Ṽi′,j′ [Q
−1]j′,j〈j| =

L
∑

i,j=1

|i〉[Q−1Ṽ Q−1]i,j〈j|

with

Ṽi,j =

∫ ∫

i(x)V (x, y)j(y) dx dy.

Obviously, the matrix Ṽ is symmetric. We now rewrite Ṽ as follows: define
a matrix S by

Si,j :=

∫

i(x)g(x)j(x) dx

with a real function g > 0 which is large in regions which shall be em-
phasized, usually near the core. Obviously, S is symmetric, and it is easy
to see that S is positive definite. Note that ‖Ṽ ‖2, ‖S‖2 = O(h), since

‖Ṽ ‖2 ≤
√

‖Ṽ ‖1‖Ṽ ‖∞ and the row sums and the column sums are O(h).

In [6, 12], the Cholesky decomposition

S = CTC,

is used to compute a low rank approximation of Ṽ , where the cut-off pa-
rameter can be chosen independently of the discretization parameter h, see
[12]. This is realized by resorting to the transformed standard eigenvalue
problem

C−T Ṽ C−1ũ = λũ, (3.8)

with ũ := Cu. Discarding eigenvalues smaller than a tolerance ε, finally
leads to an approximation Vlow satisfying an error bound

|〈φ1(x)|Vapp(x, y) − Vlow(x, y)|φ2(y)〉L2(x,y)| = O(ε). (3.9)

This corresponds to a (global) low rank approximation of Vapp. By comput-
ing this low rank approximation via (3.8), we obtained an approximation
error which is independent of the mesh width.
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In order to apply this concept also in the context of hierarchical ma-
trices, we adapt the idea of (3.8) for the approximation of the respective
matrix blocks ṼI×J (I and J are suitable subsets of the index set, and
ṼI×J the corresponding submatrix of Ṽ ) to obtain an H-matrix approxi-
mation ṼH,ε. Thus, for an admissible block [9] ṼI×J with corresponding
diagonal blocks SI×I and SJ×J of S, we compute the singular value de-
composition of

C−T
I×I

ṼI×JC
−1
J×J

.

Using a cutoff parameter ε to define the low rank approximation of each
block, it is found that the overall error committed in the approximation of
Ṽ results in

‖Ṽ − ṼH,ε‖2 = | ln(h)|O(ε),

see [2, Lemma 2.1, p.409]. Consequently, it is possible to write2

Ṽ − ṼH,ε = ÛΛÛT ,

with a unitary matrix Û and Λ = diag(λ1, . . . , λL) with λj = | ln(h)|O(εh).
Thus, the error analysis proceeds analogously to [12],

|〈φ1(x)|Vapp(x, y) − VH,ε(x, y)|φ2(y)〉L2(x,y)| =
∣

∣

∣

∣

∣

∣

L
∑

i,j=1

〈φ1|i〉〈j|φ2〉
L
∑

µ=1

[Q−1Û ]i,µλµ[ÛTQ−1]µ,j

∣

∣

∣

∣

∣

∣

≤ ‖φ1‖‖φ2‖
L
∑

i,j=1

‖i‖‖j‖

∣

∣

∣

∣

∣

L
∑

µ=1

[Q−1Û ]i,µλµ[ÛTQ−1]µ,j

∣

∣

∣

∣

∣

≤ const. ε ln(h)h3
L
∑

i,j=1

L
∑

µ=1

|[Q−1Û ]i,µ||[Û
TQ−1]µ,j |

≤ const. ε| ln(h)|h3
L
∑

i,j=1

[|Q−1Û ||ÛTQ−1|]i,j

≤ const. ε| ln(h)|h3L‖Q−1Û‖2
2 ≤ const. ε| ln(h)|h3L‖Q−1‖2

2‖Û‖2
2

≤ const. ε| ln(h)|,

where the absolute value of a matrix, |A|, is meant entry-wise. For this
estimate, we have used a simple property proven in [12, Lemma 2.1]:

Let X ∈ R
L×L be a nonsingular matrix. Then,

L
∑

i,j=1

[|XT ||X |]i,j ≤ L‖X‖2
2.

2Note that by construction, ṼH,ε is symmetric, and consequently, Ṽ − ṼH,ε has a
symmetric singular value decomposition.
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Thus, the error of our low rank approximation is bounded in terms
of the error margin ε, (almost) uniformly in the diameters of the spatial
partition. We formulate this fact in the following theorem:

Theorem 3.1 For φ1, φ2 ∈ L2, and an underlying spatial partition at L
points distributed quasi-uniformly, the error introduced by the approxima-
tion by H-matrices satisfies

|〈φ1(x)|Vapp(x, y) − VH,ε(x, y)|φ2(y)〉L2(x,y)| = O(ε ln(L)), (3.10)

where ε is an error margin which can be freely chosen.

4 NUMERICAL EXPERIMENTS

First, we give a numerical illustration of Theorem 3.1. For the spatial
discretization with underlying cylindrical coordinates, we were using poly-
nomial finite elements characterized by quadruples (n1, p1;n2, p2), with the
first pair n1, p1 giving the number n1 of polynomials of degree p1 for the
discretization of the z-coordinate and likewise n2 and p2 for the radial co-
ordinate. The resulting matrix size equals n1n2 × n1n2. To prevent too
small subdivision of the matrix, a minimal blocksize of 16 was enforced. In
Table 1 we give the values of the inner products (3.3) with underlying dis-
cretization characterized by (n1, p1;n2, p2) = (48, 2; 96, 2), approximated
by using hierarchical matrices with cut-off parameters ε, where φ1 = φ2 are
the eigenfunctions associated with the ground state energy E0 and the first
excited state E1 of the He+ ion, respectively. The rows give the correspond-
ing values for the “exact” computation, where no low rank approximation
of the meanfield integrals is used, and the approximation by hierarchi-
cal matrices with cut-off parameter equal to ε ∈ {10−4, 10−5, 10−6}. The
number of digits which coincide with the “exact” computations is roughly
proportional to the cut-off parameter ε.

ε E0 E1

0 3.692434 3.774842
1e−6 3.692433 3.774841
1e−5 3.692498 3.774953
1e−4 3.693201 3.776187

Table 1: Meanfield integrals (3.3) for the He+ ion.

Next, we demonstrate the gain in efficiency when the MCTDHF code
[16] uses model reduction by H-matrices as compared to the global ap-
proach [6, 12].
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We compute a model for the helium atom under the influence of a laser
pulse. Consequently, in (1.2) we set Z = 2, a1 ≡ 0, a2 ≡ 0, a3(t) =
A0 cos

(

πt
2σ

)

, t ∈ [−σ, σ], with A0 = 2.964, σ = 110.32. The time
propagation took place for t ∈ [−1,−0.999] with 10 steps of a Runge-
Kutta-Fehlberg 4(5) integrator on that interval. For MCTDHF, we set
N = 4, f = 2.

Table 2 gives the results of our test runs. For the cut-off parameter
ε ∈ {10−4, 10−5, 10−6}, the computation times per evaluation (evaluations
of the meanfield terms in both the imaginary time propagation for the
computation of the initial state and the 10 steps performed for the time
propagation) and numerically obtained values for the energy at the end of
the time integration are given for the H-matrix approximations as com-
pared to the global low rank approximation. The top half of Table 2 gives
the results for a spatial discretization with (n1, p1;n2, p2) = (24, 2; 48, 2),
while the lower half shows (n1, p1;n2, p2) = (48, 2; 96, 2). Note that this
results in matrix dimensions N = 1152 and N = 4608, respectively.

Obviously, the computation time is significantly decreased by the use
of hierarchical matrices. The scaling appears to be roughly linear with
respect to the matrix size for the H-matrix approximation, commensurate
with the theory summed up in Appendix A, and scales less favorably in the
case of the global low rank approximation by singular value decomposition.
Moreover, the approximation quality is indeed controlled by the cut-off
parameter ε, the difference to the most accurate of the approximations
is related to ε. The dependence is not as clear as in Table 1, which is
caused by other algorithmic components influencing the accuracy during
time integration.

ε time global time H energy global energy H

(n1, p1;n2, p2) = (24, 2; 48, 2)
1e−4 0.3622 sec. 0.0766 sec. −2.8113067472 −2.8110777972
1e−5 0.3924 sec. 0.1017 sec. −2.8113067471 −2.8113045538
1e−6 0.3887 sec. 0.1216 sec. −2.8113067471 −2.8113067403

(n1, p1;n2, p2) = (48, 2; 96, 2)
1e−4 2.5951 sec. 0.2938 sec. −2.8612096380 −2.8607521876
1e−5 4.1204 sec. 0.4682 sec. −2.8610407552 −2.8610453291
1e−6 5.1268 sec. 0.6321 sec. −2.8610407551 −2.8610406239

Table 2: Timings for global vs. hierarchical meanfield approximations.
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A Hierarchical Matrices

Let S = {1, . . . , L} be an index set. The elements of S are called degrees of

freedom. Associate with each index i a point xi ∈ R
L. Non-empty subsets

σ ⊆ S are referred to as clusters and associated with a bounded domain
∪σ. The latter is assumed to be contained in an axis oriented bounding box

Bσ of minimal size.

Definition A.1 T is a cluster tree for the index set S, if for a parameter
C there holds

1. S is the root of T .

2. Each node σ ∈ T is a subset of S.

3. If σ ∈ T is a leaf, then |σ| ≤ C.

4. If σ ∈ T is not a leaf, then there are two unique non-empty clusters
σ′, σ′′ satisfying σ′ ∩ σ′′ = ∅, σ′ ∪ σ′′ = σ, called sons.

A cluster tree can be constructed for instance from purely geometrical
information as follows: Starting with the index set S, in each step the index
set is recursively split in two by halving the associated bounding box along
the longest edge and partitioning the index set according to the resulting
new bounding boxes. This is repeated until the size of the remaining index
sets is smaller than the constant C.

For the elements of a cluster tree, we define the level recursively by
associating with the index set S the level 0 and defining the level of σ′ as
the level of σ plus one, if σ′ is a son of σ. The depth of a cluster tree is the
maximal level of its members. Note that excluding pathological cases, the
depth of T is proportional to log(L).

As a next step, a hierarchical partition of S × S is derived. If σ, τ are
clusters with respective bounding boxes Bσ, Bτ , then the block (σ, τ) is
admissible as long as

max(diam(Bσ), diam(Bτ )) < η dist(Bσ, Bτ ), (A.1)

where diam denotes the diameter of a box (in Euclidean distance) and dist
is the distance between the boxes. Otherwise, the block is inadmissible.
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The construction described above provides almost linear scaling of both
storage requirements for and arithmetic operations with hierarchical matri-
ces. More precisely, for a matrix A ∈ R

L×L, both the storage requirement
for the H-matrix approximation and number of floating point operations
required for matrix-vector multiplication when the matrix is in H-format
is bounded by C ln(L) [9].

The algebraic structure just derived is now applied for the approxima-
tion of a matrix A ∈ R

L×L, where each block in the sense of the definition
given above corresponds with a submatrix AI×J of A, where I, J denote
subsets of the index set S. In the method of cross approximation, a low
rank approximation of each admissible block is computed by some suitable
method. In our case we can simply use a truncated singular value decompo-
sition, as the computational cost of setting up the H-matrix approximation
is negligible as compared to the application of this matrix in the course of
the time integration of the MCTDHF equations.

In our analysis in §3, we make use of the following error bound resulting
from cross approximation. A proof of this result is given in [2].

Theorem A.2 Let a matrix A ∈ R
L×L be approximated by a hierarchical

matrix AH, where on each admissible block AI×J ,

‖AI×J −AH,I×J ‖2 ≤ ε

holds with an error margin ε which can be freely chosen. Then,

‖A−AH‖2 ≤ const. ln(L)ε.
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