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Abstract. We discuss a new variant of Iterated Defect Correction (IDeC), which
increases the range of applicability of the method. Splitting methods are utilized
in conjunction with special integration methods for Hamiltonian systems, or other
initial value problems for ordinary differential equations with a particular structure,
to solve the neighboring problems occurring in the course of the IDeC iteration. We
demonstrate that this acceleration technique serves to rapidly increase the conver-
gence order of the resulting numerical approximations, up to the theoretical limit
given by the order of certain superconvergent collocation methods.
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1. Introduction

In recent years, the importance of using special numerical integration
schemes that reflect certain geometric properties or retain important
conserved quantities of the flow of a differential equation has been
widely recognized [4], [5]. Many of these methods are applicable to
particular types of differential equations only. Examples of these are the
Störmer/Verlet method for Hamiltonian systems and the exponential
midpoint rule for homogeneous linear problems, but also higher order
composition methods that we focus on in this paper. These are specified
in §3.

A cheap and efficient way to estimate the global error of a numerical
method used to solve an ordinary differential equation is the defect
correction principle [10], [11]. The idea can also be used to successively
improve the accuracy of the numerical solution ([1], [3], and the refer-
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2 Hofstätter and Koch

ences therein)1. In this acceleration technique, a number of neighboring
problems have to be solved, which are not necessarily of the same type
as the original problem. Therefore it may happen that the neighboring
problems cannot be solved by the same geometric integrator as the
original problem. Thus, in [7] we proposed the method of Splitting De-
fect Correction to overcome this disadvantage. The resulting method,
which we denote by Iterated Splitting Defect Correction (ISDeC), is
described in §2, see also [1]. In §4, we outline a proof of the convergence
of the iteration, where we estimate the error of each respective ISDeC
iterate as compared with the fixed point of the iteration in terms of the
previous solution approximation, and show that the global error of the
numerical approximations decreases rapidly. Crucial technical details
of the proof are outlined in Appendix A, the complete proof is given
in [8], since this would exceed the scope of this paper. In §5 we give
numerical examples illustrating our convergence results, where ISDeC
is applied to solve the Kepler problem.

2. Iterated Splitting Defect Correction

First, we describe the classical version of Iterated Defect Correction
(IDeC) [3]. Consider an initial value problem in n dimensions

y′(t) = f(t, y(t)), y(t0) = y0, (1)

to be solved on the interval [t0, tend]. Subsequently, we assume that
a sufficiently smooth solution y of the analytical problem exists on
the whole interval. Moreover, we will require the existence of bounded
Fréchet derivatives of f at various points throughout the convergence
proof. The approximate solution η[0] := (η0, . . . , ηN ) is obtained by
some discretization method Φ on a uniform grid2 Γ = (t0, . . . , tN ),
where ti+1− ti = h, i = 0, . . . , N − 1. Denote by p[0](t) the polynomial
of degree N interpolating the values of η[0]. Using this interpolating
function, called the Zadunaisky polynomial, we construct a neighboring
problem associated with (1) whose exact solution is p[0](t):

y′(t) = f(t, y(t)) + d[0](t), y(t0) = y0, (2)

where d[0](t) := p[0]
′
(t)− f(t, p[0](t)). We now solve (2) using the same

numerical method Φ and obtain an approximate solution π[0] for p[0](t).

1 The idea to use acceleration techniques in conjunction with composition meth-
ods in order to improve the order of accuracy of a numerical approximation is also
discussed in [2].

2 In fact, our arguments can easily be extended to piecewise equidistant grids, we
will indicate the necessary changes at the appropriate places.
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This means that for the solution of the neighboring problem (2) we
know the global error which is a good estimate for the unknown error
of the original problem (1). This estimate can be used to improve the
first solution,

η[1] := η[0] +
(
p[0] − π[0]

)
. (3)

Now, these values are used to define a new interpolating polynomial

p[1](t) by requiring p[1](tj) = η
[1]
j . Again, p[1](t) defines a neighboring

problem in the same manner as in (2), where again the exact solution
is known, and the numerical solution π[1] of this neighboring problem
serves to obtain the second improved solution

η[2] := η[0] +
(
p[1] − π[1]

)
.

This process can be continued iteratively. For obvious reasons one does
not use one interpolating polynomial for the whole interval [t0, tend]
in practice. Instead, globally continuous piecewise functions composed
of polynomials of (moderate) degree m are defined as the Zadunaisky
polynomials for the specification of the neighboring problems.

In many situations, the defect correction principle yields an asymp-
totically correct error estimate and a successive improvement in the
convergence orders of the respective iterates, up to a certain limit
determined by the smoothness of the problem data and the value of
m, see for example [1], [3].

If in the scheme described above the basic numerical solution method
Φ is intended especially for ODEs with a particular structure, the neigh-
boring problem (2) may have a form to which the integrator cannot be
applied straightforwardly. For example, if the Störmer/Verlet method
is applied to a Hamiltonian system, (2) is no longer an autonomous,
separated system, cf. [7].

In order to be able to use IDeC even in such a case, we employ
splitting methods, cf. [4, Sec. II.5]. To apply Strang splitting to (2), we
split the time-dependent vector field into its components f(t, y) and
d[0](t). We denote the numerical flow of f(t, y) by Φt,h, such that one
step (t, ηi) 7→ (t+h, ηi+1) with step size h of the basic scheme Φ applied
to (1) can be written as ηi+1 = Φt,h (ηi). Note that for autonomous
problems (1), we can write the flow independently of t, ηi+1 = Φh(ηi).
The numerical flow ∆t,h of the other component d[0](t) is defined by
the quadrature rule

∆t,h(y) = y +

∫ t+h

t
D[0](τ)dτ, (4)

where D[0](t) is a piecewise polynomial interpolant of degree ≤ m − 1
of d[0](t).
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4 Hofstätter and Koch

To explain this more precisely, we require some additional notation.
Choose the grid Γ = (t0, . . . , tN ) such that N = mN1 for some integer
N1, and denote ti,j := tim+j , j = 0, . . . ,m, τi := tim, i = 0, . . . , N1 −
1, τN1 := tN . We split the integration interval into subintervals Ji :=
[τi, τi+1] of length H = mh. On the interval Ji, we define interpolation
nodes

σi,j := τi +Hρj , j = 1, . . . ,m, 0 ≤ ρ1 < ρ2 < · · · < ρm ≤ 1. (5)

The highest attainable convergence orders for the ISDeC iterates result
if we use interpolation at Gaussian points in order to define D[0](t).
This implies that the maximal convergence order of IDeC iterates is
O(H2m), see [7] and §4 of this paper.

Using Φt,h and ∆t,h from above, the numerical solution of (2) is
computed using the numerical flow

Ψt,h = ∆t+h/2,h/2 ◦ Φt,h ◦∆t,h/2, (6)

where ◦ denotes the composition of the numerical methods (which
means that the result computed by one method is the starting value
for the next method). We call the method where the solution of the
neighboring problems is computed in this way Iterated Splitting Defect
Correction (ISDeC).

3. High Order Geometric Integration Schemes

In the sequel, we describe high order composition methods [4, Sec. II.4].
When these are based on low order schemes with favorable geometric
properties, as for example the Störmer/Verlet method for Hamilto-
nian systems, these properties are often inherited by the higher order
scheme, see for example [4, Sec. II.4] and the references therein. Let
the basis for ISDeC be a composition method

Φ = Φ[s] ◦ . . . ◦ Φ[2] ◦ Φ[1], (7)

where Φ[j] are any suitable low-order methods, see for example (9)
below for the case of symmetric composition, or [7] and references
therein for more general situations. Then, the numerical method Ψ
for the solution of the neighboring problem (2) can be defined by

Ψt,h = (8)

∆t+δ̂s+1h,δs+1h
◦ Φ[s] ◦∆t+δ̂sh,δsh

◦ . . . ◦∆t+δ̂2h,δ2h
◦ Φ[1] ◦∆t+δ̂1h,δ1h

,
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where δ1, . . . , δs+1 are given real numbers which satisfy

δ1 + . . .+ δs+1 = 1, δ̂j :=

j−1∑
i=1

δi,

and ∆t,h is given by (4).
To illustrate the composition methods we consider (cf. [7]), we de-

scribe Yoshida’s method as an example for symmetric composition of
symmetric methods [4, Sec. V.3]. Our arguments also apply in more
general situations, see the results for Suzuki’s method or McLachlan’s
method (which is an example for symmetric composition of first order
methods) given in [7]. The essential properties of the basic method Φ we
use in our convergence proof are the basic convergence order q, existence
of a modified differential equation and asymptotic error expansion,
see §4, and the suitable definition of the method Ψ to guarantee that
this auxiliary method has the same order as Φ.

For symmetric composition we choose

Φ[j] = φt+γ̂jh,γjh, j = 1, . . . , s, (9)

where φ is a symmetric second order method, the coefficients γs =
γ1, γs−1 = γ2, . . . are symmetric, and γ̂j :=

∑j−1
i=1 γj . Examples of pos-

sible choices for φ are the Störmer/Verlet scheme, the implicit midpoint
rule, the implicit trapezoidal rule, or the exponential midpoint rule [7].
For Yoshida’s method, the coefficients γj are chosen as

s = 3, γ1 = γ3 = 1/(2− 21/3), γ2 = −21/3/(2− 21/3). (10)

This yields a method of order four, cf. [4, Sec. II.4]. A natural choice
for the parameters δj in the splitting (8) is

δ1 = γ1/2, δj = (γj−1 + γj)/2, j = 2, . . . , s, δs+1 = γs/2,
(11)

since then Ψ can be written as

Ψ = Ψ[s] ◦ . . . ◦Ψ[1], (12)

where

Ψ[j] = ∆t+γ̂jh+γjh/2,γjh/2 ◦ φt+γ̂jh,γjh ◦∆t+γ̂jh,γjh/2. (13)

Consequently, Ψ[j] is a symmetric second-order method, and Ψ is con-
structed from Ψ[j] by the same composition scheme as Φ. Hence, Ψ has
the same order as Φ.
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4. Fixed Point Convergence

We confine our analysis to autonomous problems

y′(t) = f(y(t)), y(t0) = y0 (14)

without restriction of generality. The neighboring problems

y′(t) = f(y(t)) + d(t), y(t0) = y0 (15)

are nonetheless non-autonomous. We use the standard procedure to
rewrite this system as an autonomous differential equation by adding
the trivial equation s′(t) = 1 with exact solution s(t) = t,

ỹ′(t) = f̃(ỹ(t)) + d̃(ỹ(t)), ỹ(t0) = ỹ0, (16)

where

ỹ =
(y
s

)
, f̃(ỹ) :=

(
f(y)

0

)
, d̃(ỹ) :=

(
d(s)

1

)
, ỹ0 :=

(
y0
t0

)
. (17)

To achieve formal correspondence between the original equation and
the augmented neighboring problem, we also add the trivial equation
to (14) to obtain

ỹ′(t) = f̂(ỹ(t)), ỹ(t0) = ỹ0, (18)

where

f̂(ỹ) :=

(
f(y)

1

)
.

To analyze the convergence of ISDeC introduced in §2, we consider
one step of the iteration, starting from a grid vector η = ηi,j , j =
0, . . . ,m, i = 0, . . . , N1 − 1, and estimate the iteration error of the
new approximation in terms of the iteration error of ηi,j . ηi,j is either
the solution of (14) by the basic scheme Φ, or an improved solution
approximation computed in the course of the ISDeC iteration. For
this type of analysis we use the fact that Iterated Defect Correction
converges to a fixed point p∗ = (p∗0, p

∗
1, . . . , p

∗
N1−1) under fairly general

assumptions [1], [9]. This fixed point is easily identified as the con-
tinuous collocating function consisting of polynomials of degree ≤ m
which satisfies (14) at the points σi,j , i = 0, . . . , N1 − 1, j = 1, . . . ,m,
cf. (5). The iteration error η − p∗ is the error of the respective grid
vector as compared with the fixed point. The results we obtain for the
iteration error directly translate into order results for the global error
of the numerical solution as compared with the exact solution y of
(14) by the triangle inequality. Note that in our estimates, we usually
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neglect the last, trivial component of (16), which is necessary however
for technical reasons that will become clear presently.

Denote by p = (p0, p1, . . . , pN1−1) the piecewise polynomial func-
tion of maximal degree m interpolating ηi,j at ti,j , j = 0, . . . ,m, i =
0, . . . , N1− 1. One step of the ISDeC procedure yields a new grid func-
tion ηnewi,j and associated interpolant pnew = (pnew0 , pnew1 , . . . , pnewN1−1).
Subsequently, we will derive estimates for the current iteration error
enew := pnew − p∗ in terms of estimates for e := p− p∗.

We now express all the quantities associated with one step of ISDeC
using the calculus of Lie derivatives, cf. [4, Sec. III.5]. We start by
rewriting the Zadunaisky polynomial p and the fixed point p∗ in (22)
and (26), and derive analogous expressions for the quantities computed
numerically, the basic solution η[0] of (14) and the computational so-
lution of the neighboring problem (15), see (36) and (37). Note that
actually we use the flows for the autonomous formulations augmented
by the trivial equations as in (16) or (18).
pi(t), t ∈ Ji, i = 0, . . . , N1 − 1, is the exact solution of

y′(t) = f(y(t)) + di(t), y(τi) = pi(τi), (19)

where the defect di(t) is defined by

di(t) := p′i(t)− f(pi(t)). (20)

Analogously as in (16), p̃i(t) is the exact solution of the augmented
equations

ỹ′(t) = f̃(ỹ(t)) + d̃i(ỹ(t)), ỹ(τi) = p̃i, (21)

where p̃i := p̃i(τi). p̃i(t) can thus be written as

p̃i(τi + t) = exp(t(F +Di))Id(ỹ)
∣∣∣ỹ = p̃i , (22)

where F and Di are the differential operators (Lie derivatives)

F =
n+1∑
j=1

f̃j(ỹ)
∂

∂ỹj
=

n∑
j=1

fj(y)
∂

∂yj
(23)

and

Di =

n+1∑
j=1

d̃i,j(ỹ)
∂

∂ỹj
=

n∑
j=1

di,j(s)
∂

∂yj
+

∂

∂s
, (24)

see [4, Sec. III.5.1]. Here, fj and di,j denote the j-th component of f
and di, respectively, and the operator

D̂∗ :=
∂

∂s
(25)
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only acts on the last component of ỹ.
Now we derive a representation analogous to (22) for the fixed point

p∗ = (p∗0, p
∗
1, . . . , p

∗
N1−1). With p̃∗, d∗, and d̃∗ defined analogously as

before, we obtain for p̃∗i := p̃∗i (τi)

p̃∗i (τi + t) = exp(t(F +D∗i ))Id(ỹ)
∣∣∣ỹ = p̃∗i

(26)

with

D∗i =
n+1∑
j=1

d̃∗i,j(ỹ)
∂

∂ỹj
=

n∑
j=1

d∗i,j(s)
∂

∂yj
+

∂

∂s
. (27)

Choose as the basic method Φ for ISDeC a composition method
according to §3. Φ is composed of substeps using the method φ. For
all the methods we consider, the numerical flow defined by φ satisfies
a modified differential equation

y′ = f(y) + hF1(y) + h2F2(y) + . . . , (28)

cf. [4, Ch. IX]. Thus, the numerical flow of φ can be written as

φh(y) = exp(h(F + hF1 + h2F2 + . . .))Id(y), (29)

with the Lie derivatives

F` =
n∑
j=1

F`,j(y)
∂

∂yj
, ` = 1, 2, . . . . (30)

If we assume that Φ is a method of order q, then its numerical flow
when applied to (14) can be written as

Φh(y) = exp(h(F + hqG∗q + hq+1G∗q+1 + . . .))Id(y), (31)

where the differential operators G∗` are certain well defined elements
of the free Lie algebra generated by {F ,F1,F2, . . .}, i. e., they are
certain linear combinations of iterated commutators of elements of
{F ,F1,F2, . . .}, see [4, Sec. III.5.4].

The corresponding numerical flow for the augmented equation (18)
is given accordingly by

Φ̃h(ỹ) = exp(h(F + D̂∗ + hqG∗q + hq+1G∗q+1 + . . .))Id(ỹ). (32)

The numerical flow ∆̃i,h(ỹ) of the vector field d̃i(ỹ) of (21) is given
by

∆̃i,h(ỹ) = exp(hD̂i)Id(ỹ), (33)
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where D̂i is defined similarly as in (24),

D̂i =
n∑
j=1

Di,j(s)
∂

∂yj
+

∂

∂s
. (34)

Recall that Di(t) is the polynomial of degree ≤ m − 1 interpolating
di(t) at the collocation points σi,1, . . . , σi,m, cf. (4), (5).

The numerical solution method for the neighboring problem, Ψ, is
constructed in such a way that a method of order q results and the
composition of the submethods is parallel to the definition of Φ, see §3.
Thus, the numerical flow Ψ̃i,h(ỹ) for (21) is given by

Ψ̃i,h(ỹ) = exp(h(F + D̂i + hqGi,q + hq+1Gi,q+1 + . . .))Id(ỹ), (35)

where the differential operators Gi,` are well defined elements of the

free Lie algebra generated by {F , D̂i,F1,F2, . . .}. Note that if each

occurrence of D̂i in the definition of Gi,` is replaced by D̂∗, the resulting
differential operator coincides with G∗` from (32).

Now we are in a position to write the numerical solutions of the
original and the neighboring problem in terms of Lie derivatives as in
(22) and (26).

The basic numerical solution η̃
[0]
i,j of (18) is given by η̃

[0]
i,j := π̃∗i (τi +

jh), where the functions π̃∗i (t), t ∈ Ji, are recursively defined by

π̃∗0 = ỹ0,

π̃∗i (τi + t) = exp(t(F + D̂∗ + hqG∗q + hq+1G∗q+1 + . . .))Id(π̃∗i ), (36)

π̃∗i+1 = π̃∗i (τi +H),

cf. (32). Here and in the sequel, Id(π̃∗i ) denotes Id(ỹ)|ỹ=π̃∗i
and analo-

gously for other arguments.
In the same way, the numerical solution π̃i,j of the neighboring

problem (16) is given by π̃i,j := π̃i(τi + jh), where

π̃0 = ỹ0,

π̃i(τi + t) = exp(t(F + D̂i + hqGi,q + hq+1Gi,q+1 + . . .))Id(π̃i), (37)

π̃i+1 = π̃i(τi +H),

cf. (35).
Now, one iteration step of the ISDeC method on the subinterval Ji

can be written as

pnewi (ti,j) = π̃∗i (ti,j) + (p̃i(ti,j)− π̃i(ti,j)) , (38)

see (3).
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This yields a representation of the iteration error enew = pnew − p∗,
which is the piecewise interpolant of degree ≤ m at ti,j of the first n
components3 of ε̃ = (ε̃0, ε̃1, . . . , ε̃N1−1), where

ε̃i(τi + t) := (π̃∗i (τi + t)− π̃i(τi + t))− (p̃∗i (τi + t)− p̃i(τi + t)). (39)

Recall that the function ε̃(t) is defined in a piecewise manner on
the subintervals Ji, i = 0, . . . , N1 − 1, cf. (36) and (37). Subsequently,
we will derive estimates for the relevant quantities on each interval Ji,
and use the following well-known result to obtain global estimates on
[t0, tend]. We formulate the result for uniform grids, the modifications
necessary for piecewise equidistant (nonuniform) grids are indicated
in [6].

LEMMA 1 (Discrete Gronwall Lemma). Let the sequence of nonnega-
tive numbers ξi, i = 0, 1 . . . satisfy

ξ0 = δ0, ξi+1 ≤ (1 + ω)ξi + δ, i = 0, 1, . . . (40)

with ω > 0 and δ ≥ 0. Then the estimate

ξi ≤
eiω − 1

ω
δ + eiωδ0 (41)

holds for all i.

Next, we introduce Sobolev-like norms by means of which we will
estimate grid vectors or functions XH occurring in the course of the
ISDeC step p 7→ pnew. The index H emphasizes that XH depends on the
underlying grid and thus on the step size H. Frequently, our estimates
will be written as

XH = O(H`‖e‖k), (42)

where this short-hand notation implies that there are constants H0 > 0
and C independent of H and p such that for all 0 < H ≤ H0

‖XH‖ ≤ CH`
k∑

κ=0

max
i=0,...,N1−1

max
t∈Ji
|e(κ)i (t)|. (43)

Next, we formulate the main results of this paper. The proofs of
these propositions are given in Appendix A, together with a number of
technical lemmas required to derive the estimates. The numbering of
the following lemma is chosen such as to be consistent with Appendix A.

3 Note that the (n+ 1)-st component of ε̃ is zero.
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LEMMA 7. Let

ε̃i := ε̃i(τi) = (π̃∗i − π̃i)− (p̃∗i − p̃i). (44)

Then for each u ≥ 0 the bound

|ε̃i| = O(Hmin(q,m)‖e‖min(q,m)) +O(Hm‖e‖m) +O(Hu) (45)

holds.

For the following result, we only consider the case where q ≤ m.
Although the arguments can be extended in principle to the case q > m,
see [8], we omit this case here because it is not relevant in practice.

Using Lemma 7, the central convergence theorem for the iteration
error of ISDeC can be proven:

THEOREM 1. The iteration error enew = pnew−p∗ satisfies estimates∣∣∣∣ dκdtκ enew(τi + t)

∣∣∣∣
=


O(Hm‖e‖m) +O(Hq‖e‖q) +O(Hu), κ = 0,
O(Hm+1−κ‖e‖m) +O(Hq‖e‖q−1+κ) +O(Hu+1−κ),

κ = 1, . . . ,m− q,
O(Hm+1−κ‖e‖m) +O(Hu+1−κ), κ = m− q + 1, . . . ,m

(46)

for each u ≥ 0. If the collocation abscissae ρj from (5) satisfy the
condition

m∑
j=1

ρj =
m

2
, (47)

then the estimate (46) for κ = m can be replaced by the sharper bound∣∣∣∣ dmdtm enew(τi + t)

∣∣∣∣ = O(H2‖e‖m) +O(Hu+1−m). (48)

Remark. Note that condition (47) is satisfied if ρj are symmetric in
[0, 1], and consequently holds for Gaussian points for example.

5. Numerical Examples

To illustrate the results derived in §4, we now demonstrate the or-
der sequences for the ISDeC iterates implied by Theorem 1 for the
fourth order scheme resulting from Yoshida’s method based on the
Störmer/Verlet method, see §3. To this end, we first discuss the iter-
ation error of the basic solution and its derivatives in the following
theorem.
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12 Hofstätter and Koch

THEOREM 2. The interpolant e[0] of the iteration error

ε[0] = η[0] − p∗

for the basic solution η[0] of (14) computed by a numerical method Φ of
order q satisfies

‖e[0]‖k = O(Hq), k = 0, . . . ,m− q + 1,

‖e[0]‖k = O(Hm+1−k), k = m− q + 2, . . . ,m− 1, (49)

‖e[0]‖m =

{
O(H2) if ρj satisfy (47),
O(H) otherwise,

if ISDeC is defined by polynomials of degree m.

Proof. The estimates above follow from

‖g‖k = O(Hq), k = 0, . . . ,m,

where g is the piecewise polynomial interpolant of degree ≤ m of the
global error η[0] − y. This can be proven by means of an asymptotic
expansion of the global error of Φ: If a sufficiently long error expansion
exists, then there is a smooth function E(t,H) such that

η
[0]
i,j − y(ti,j) = E(ti,j , H)Hq,

with ∂k

∂tk
E(t,H) = O(1), k = 0, . . . ,m. Consequently, we conclude∣∣∣∣ dkdtk gi(t)

∣∣∣∣ ≤ ∣∣∣∣ dkdtk gi(t)− ∂k

∂tk
E(t,H)Hq

∣∣∣∣+

∣∣∣∣ ∂k∂tkE(t,H)Hq

∣∣∣∣
≤ O(Hm+q+1−k) +O(Hq) = O(Hq), k = 0, . . . ,m,

which follows from Lemma 3. Moreover, we use the relations

‖Q‖0 =

{
O(Hm+1) if ρj define collocation of order ≥ m+ 1,
O(Hm) otherwise,

‖Q‖k = O(Hm+1−k), k = 1, . . . ,m− 1,

‖Q‖m =

{
O(H2) if ρj satisfy (47),
O(H) otherwise

for the piecewise polynomial interpolantQ of p∗−y at ti,j , j = 0, . . . ,m.
These are standard results for collocation methods, again taking into
account Lemma 3. The improved estimate ‖Q‖m = O(H2) when (47)
holds follows from

|Q(m)(t)| = O(H2), if ρj satisfy (47), (50)
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which is shown using Lemma 9, see [8]. 2

Using this result for the basic approximation and Theorem 1, we
can easily conclude the sequence of iteration errors for the respective
ISDeC iterates. To illustrate the procedure, we give the results for the
case where m = 6, 7, and 8, respectively, and Φ is a fourth order
composition method like Yoshida’s method, cf. §3.

If the condition (47) is satisfied, for the iteration errors we conclude
the order sequences for ‖e[ν]‖0 for the polynomial degrees

m = 6 : O(H4), O(H7), O(H9), O(H11), O(H13), O(H15), . . .

m = 7 : O(H4), O(H8), O(H10), O(H12), O(H14), O(H16), . . .

m = 8 : O(H4), O(H8), O(H10), O(H12), O(H14), O(H16), . . .

These are also observed in the numerical experiments reported below,
see also [7]. Note that the actually observed orders form = 6 in this case
are in fact higher in the numerical experiments reported in [7] than the
orders concluded from the considerations above. These experimental
results are no contradiction to the theory, however, since we only give
sufficient conditions for our estimates to hold.

If conversely (47) is not satisfied, the resulting order sequences for
‖e[ν]‖0 are

m = 6 : O(H4), O(H7), O(H8), O(H9), O(H10), O(H11), . . .

m = 7 : O(H4), O(H8), O(H9), O(H10), O(H11), O(H12), . . .

m = 8 : O(H4), O(H8), O(H10), O(H11), O(H12), O(H13), . . .

To illustrate the convergence results discussed above, we consider a
simple Hamiltonian test example, the Kepler problem. Let x = (x1, x2),
y = (y1, y2), then the differential equations are defined by

x′(t) = −∇yH(x, y), y′(t) = ∇xH(x, y),

with

H(x, y) =
1

2
(x21 + x22)−

1√
y21 + y22

.

The exact solution of the Kepler problem is periodic with period 2π.
Consequently, we choose the integration interval [t0, tend] = [0, 2π]. The
initial values are given as

y1(0) = 1− e, y2(0) = 0, y′1(0) = 0, y′2(0) =

√
1 + e

1− e
, (51)

where in our experiments we use e = 0.6. The test runs were imple-
mented in C++ using “quad-double” precision, see
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14 Hofstätter and Koch

Table I. Iteration errors, m = 7 Gaussian points

H Yoshida ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4

2π/25 1.06E−02 7.45E−05 1.58E−06 7.77E−09 5.20E−11

π/25 6.76E−04 3.05E−07 4.43E−10 5.71E−13 9.38E−16

π/50 4.25E−05 1.21E−09 1.42E−13 1.01E−16 7.19E−20

π/100 2.66E−06 4.72E−12 6.71E−17 2.38E−20 4.59E−24

π/200 1.66E−07 1.85E−14 4.82E−20 5.78E−24 2.83E−28

π/400 1.04E−08 7.22E−17 4.29E−23 1.41E−27 1.73E−32

π/800 6.50E−10 2.82E−19 4.09E−26 3.44E−31 1.06E−36

2π/25

π/25
3.97 7.93 11.80 13.73 15.76

π/50
3.99 7.98 11.61 12.46 13.67

π/100
4.00 8.00 11.05 12.05 13.94

π/200
4.00 8.00 10.44 12.01 13.99

π/400
4.00 8.00 10.13 12.00 14.00

π/800
4.00 8.00 10.03 12.00 13.99

http://crd.lbl.gov/˜dhbailey/mpdist/

This extended precision (approximately 64 decimal digits) was nec-
essary in order to observe unambiguously even very high convergence
orders before reaching accuracies of the order of magnitude of roundoff
error.

In Table I, we give the iteration errors of the basic solution computed
by Yoshida’s method in conjunction with the Störmer/Verlet scheme,
and of the first four steps of ISDeC based on this composition method
and interpolation at m = 7 Gaussian points (thus, the fixed point of
the iteration is a collocation solution of order 14, and the condition (47)
is satisfied). Moreover, the empirical convergence orders computed for
two successive step sizes H are listed. The order sequence corresponds
to the theoretical results derived above.

Table II shows the corresponding results for the case where the
interpolation is defined for m = 7 points ρj , see (5), chosen randomly
in [0, 1]. The points do not satisfy the relation (47), and the order of the
fixed point is seven. Again, the order sequence of the iteration errors
reflects our theoretical considerations.

So far, we have considered the iteration error of ISDeC. The global
error of the ISDeC iterates as compared with the exact solution of
(14) is of course closely linked to this quantity. Namely, it follows from
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Table II. Iteration errors, m = 7 random points

H Yoshida ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4

2π/25 6.23E−02 2.98E−03 1.07E−04 1.10E−05 1.29E−06

π/25 5.45E−04 1.33E−05 1.55E−07 2.68E−08 6.52E−11

π/50 4.23E−05 4.26E−08 3.06E−11 2.06E−11 3.97E−14

π/100 2.66E−06 1.57E−10 1.43E−13 1.87E−14 1.70E−17

π/200 1.66E−07 6.01E−13 4.65E−16 1.77E−17 7.93E−21

π/400 1.04E−08 2.32E−15 1.09E−18 1.70E−20 3.80E−24

π/800 6.50E−10 9.03E−18 2.29E−21 1.65E−23 1.84E−27

2π/25

π/25
6.84 7.81 9.43 8.68 14.27

π/50
3.69 8.29 12.31 10.35 10.68

π/100
3.99 8.08 7.74 10.11 11.19

π/200
4.00 8.03 8.26 10.05 11.07

π/400
4.00 8.02 8.74 10.02 11.03

π/800
4.00 8.01 8.89 10.01 11.01

the triangle equality that the global error has the same order as the
iteration error up to the order defined by the fixed point p∗. If we use
Gaussian points σi,j for the interpolation of the defect, see (4), (5), the
maximally attainable order of the global error of ISDeC iterates is 2m,
cf. [7].

Further numerical experiments are reported in [7], where it is il-
lustrated that the theory applies also to Suzuki’s composition method
based on the Störmer/Verlet scheme for Hamiltonian systems or the
exponential midpoint rule for linear, homogeneous ODEs. Moreover,
McLachlan’s method based on either the symplectic or explicit/implicit
Euler methods is covered by our treatment. The order results ob-
served for Gaussian, Radau or random interpolation nodes illustrate
our theoretical estimates, and it is also demonstrated that a choice of
interpolation points such that (47) is satisfied, but σi,j are not sym-
metric, still yields (48). Finally, as an interesting special case a method
analyzed in [9] is also shown to fit into the framework of our discussion,
where the trapezoidal rule is considered as a composition of the explicit
and implicit Euler methods [7].
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16 Hofstätter and Koch

6. Discussion and Outlook

In this paper, we have given a rigorous error analysis for a new defect
correction method based on the ideas of splitting and composition,
which we denote as Iterated Splitting Defect Correction (ISDeC). This
method can be employed to make Iterated Defect Correction applicable
in conjunction with geometric integrators for problems with a special
structure, where a straightforward application of defect correction is
not possible. Our analysis shows that high convergence orders can be
achieved by ISDeC up to a theoretical limit defined in terms of certain
(superconvergent) collocation methods. The main tool in our proof is
the use of Lie derivatives [4, Sec. III.5.1] to show high-order fixed point
convergence of the iterates. This technique naturally extends also to
the analysis of classical versions of Iterated Defect Correction [1] and
thus supplements standard techniques for this class of methods.

Our focus in this work has been on making the idea of Iterated
Defect Correction applicable to a class of discretization methods for
problems where a straightforward application of the method fails or
is disadvantageous. Moreover, we were able to present a very general
framework for the rigorous error analysis of defect correction methods,
which allows to also explain the high convergence orders attainable by
using defect interpolation at Gaussian points.

Unfortunately, the geometric properties of the basic methods are not
preserved exactly in general for the high-order approximations obtained
by our method. This has also been observed for other acceleration
techniques in conjunction with geometric integrators [2].

We would like to point out nonetheless that our convergence results
have simple implications on the approximation quality of the ISDeC
iterates with respect to important conserved quantities of the exact
flow, like the angular momentum or the Hamiltonian in the case of
Hamiltonian systems, or the Euclidean norm of the solution for cer-
tain linear autonomous systems. If for instance we choose Gaussian
interpolation nodes σi,j for ISDeC applied to a Hamiltonian system,
angular momentum and the Hamiltonian are conserved exactly by the
fixed point of the ISDeC iteration. Consequently, the respective ISDeC
iterates conserve these quantities up to terms of the order of the it-
eration error, which may be far better than the absolute error of the
numerical solution. Unfortunately, no better approximation properties
are observed in general [7].

We found that the application of ISDeC may also negatively affect
the long-time approximation properties of the numerical solution. It
appears that there is a trade-off between using lower order methods
which display favorable error growth for long time intervals, and the
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application of high order schemes to achieve high accuracy on compar-
atively short intervals. The conclusion that the latter aim is also well
justified in the context of geometric integration is supported by the
claims of [2].

Appendix

A. Technical Details of the Proof

Here, we indicate the technical details necessary in order to prove the
central convergence results formulated in §4. For lack of space, not all
the arguments are carried out exhaustively, for the complete proofs we
refer the reader to [8]. The notation used here is introduced in §4.

The following relations will be used in many of our arguments given
in the course of the convergence proof for ISDeC. The proofs of the
propositions are immediate, for details see [8].

LEMMA 2. If XH satisfies (42), then

XH = O(H`−κ‖e‖k−κ), κ = 0, . . . , k, (52)

XH = O(H`‖e‖m), if k ≥ m. (53)

LEMMA 3. Let pi be a polynomial of degree ≤ m interpolating a suffi-
ciently smooth function y ∈ Cm+1[t0, tend] on the interval Ji. Then the
estimates

max
t∈Ji
|p(κ)i (t)− y(κ)(t)| ≤ const.Hm+1−κ max

t∈Ji
|y(m+1)(t)|, (54)

max
t∈Ji
|p(κ)i (t)− y(κ)(t)| ≤ const.max

t∈Ji
|y(κ)(t)| (55)

hold for κ = 0, . . . ,m+ 1.

Now, we derive bounds for quantities appearing in the convergence
proof for ISDeC.

LEMMA 4. The interpolant Di,j(t) of one component of the defect of
p, di,j(t) = p′i,j(t)− fj(pi(t)), satisfies

D
(k)
i,j (τi) = O(‖e‖k+1), k = 0, . . . ,m− 1, (56)

D
(k)
i,j (τi) = 0, k ≥ m. (57)
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18 Hofstätter and Koch

Proof. Let Fi,j(t) and F ∗i,j(t) be the polynomials of degree ≤ m −
1 which interpolate the component functions fj(pi(t)) and fj(p

∗
i (t)),

respectively, at the nodes σi,1, . . . , σi,m. From the definition of p∗(t) we
conclude p∗′i,j(t) = F ∗i,j(t), and consequently

D
(k)
i,j (τi) = (p

(k+1)
i,j (τi)− p∗(k+1)

i,j (τi))− (F
(k)
i,j (τi)− F ∗(k)i,j (τi)). (58)

Clearly,

p
(k+1)
i,j (τi)− p∗(k+1)

i,j (τi) = e
(k+1)
i,j (τi) = O(‖e‖k+1).

Using Lipschitz conditions for f
(κ)
i,j (y), κ = 0, . . . , k, and Lemma 3 for

the interpolant Fi,j(t)− F ∗i,j(t) of fj(pi(t))− fj(p∗i (t)),

F
(k)
i,j (τi)− F ∗(k)i,j (τi) = O(‖e‖k) = O(‖e‖k+1)

is straightforward to show. 2

LEMMA 5. For the quantities defined in (22), (26), (36) and (37),

|π̃i − p̃i| = O(Hmin(q,m)) (59)

and

|π̃∗i − p̃∗i | = O(Hmin(q,m)) (60)

holds for i = 0, . . . , N1.

Proof. To prove (59), we expand (22) and (37) up to terms of order
O(Hq) and obtain

π̃i+1 − p̃i+1 = π̃i − p̃i +

q∑
k=1

Hk

k!

(
(F + D̂i)kId(π̃i)−

− (F +Di)kId(p̃i)
)

+O(Hq+1). (61)

Throughout the analysis given in this paper, it is important to realize
the general form of terms occurring in expansions of expressions like
Hk

k! (F +Di)kId(p̃i). We denote the generic form of the components of
these terms by

Hk

k!
f(pi)di(τi), (62)

where f(y) is either the constant function f(y) ≡ 1 or a product of
component functions fj(y) of f(y) or derivatives thereof, all evaluated
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at y = pi (the first n components of p̃i). di(τi) denotes expressions of
the form

di(τi) = d
(κ1)
i,j1

(τi) · · · d(κr)i,jr
(τi), (63)

where the derivatives are of order ≤ k − 1 and di,j denotes one com-

ponent of the defect di. Clearly, the components of Hk

k! (F +Di)kId(p̃i)
can be expanded in this way for all k = 1, . . . , q.

Likewise, the components of Hk

k! (F + D̂i)kId(π̃i) have expansions
which contain terms

Hk

k!
f(πi)Di(τi), (64)

where f(y) is evaluated at y = πi, and (63) is replaced by

Di(τi) = D
(κ1)
i,j1

(τi) · · ·D(κr)
i,jr

(τi). (65)

Combining corresponding terms in the above expansions we obtain

f(πi)Di(τi)−f(pi)di(τi) = (f(πi)−f(pi))Di(τi)+f(pi)(Di(τi)−di(τi)).

Using Lemma 3 applied to the interpolating polynomials Di,j(t) of
di,j(t) which have degree ≤ m− 1, it is easy to show that

Di(τi)− di(τi) = O(Hm−k+1), (66)

if we recall that the highest derivatives occurring in this relation are of
order ≤ k − 1. Using a Lipschitz condition for f(y), we now conclude

Hk

k!
|f(πi)Di(τi)− f(pi)di(τi)| ≤ const.Hk|π̃i − p̃i|+O(Hm+1)

≤ const.H|π̃i − p̃i|+O(Hm+1).

Summation over all k = 1, . . . , q in (61) now yields

|π̃i+1 − p̃i+1| ≤ (1 + const.H)|π̃i − p̃i|+O(Hmin(q,m)+1). (67)

The bound (59) now follows from Lemma 1, (60) is shown analo-
gously. 2

LEMMA 6. For each u > 0, the relation

|π̃∗i − π̃i| = O(‖e‖1) +O(Hu) (68)

holds.
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Proof. Expansion of (36) and (37) up to terms of order O(Hu) and
combination of like powers of H yields

π̃∗i+1 − π̃i+1 = π̃∗i − π̃i +
u∑
k=1

Hk

k!

(
FkId(π̃∗i )− (F + D̂i)kId(π̃i)

)
+

+ [terms of order ≤ u involving G∗` or Gi,`] +

+O(Hu+1) + (0, . . . , 0, H)T . (69)

Here we have used

(F + D̂∗)k = Fk + D̂∗k,
D̂∗Id(ỹ) = (0, . . . , 0, 1)T and D̂∗kId(ỹ) = 0, k ≥ 2.

The last component of the term (0, . . . , 0, H)T cancels with the cor-

responding term in the expansion of (F + D̂i)kId(π̃i). Generally, the
last component in (69) is zero and only the first n components are
considered in our analysis.

The terms in the expansion of

Hk

k!
(FkId(π̃∗i )− (F + D̂i)kId(π̃i))

are estimated similarly as in Lemma 5.
To estimate the terms of order ≤ u involving G∗` or Gi,` in (69),

we have to understand the general form of the involved terms. This is
explained in detail in [8]. We omit the precise, yet lengthy statement of
these expressions here, the derivation can be reconstructed from results
in [4], see in particular Sec. III.4.2 of this reference. The appearing
terms take either of two possible forms:

Hk1hk2

k1!
f f1 · · · fr, (70)

where f is as in (62), and likewise f` denotes products of components
F`,j of F` and derivatives thereof, all evaluated at either π∗i or πi.
Additionally, there are terms of the form

−H
k1hk2

k1!
f(πi)f1(πi) · · · fr(πi)Di(τi), (71)

where Di(τi) is defined as in (65). Noting the precise number of occur-
rences of these terms and the orders of the involved derivatives, it is
possible to derive the estimates

Hk1hk2

k1!
|f(π∗i )f1(π∗i ) · · · fr(π∗i )− f(πi)f1(πi) · · · fr(πi)|

≤ const.H|π̃∗i − π̃i|, (72)
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and

Hk1hk2

k1!
|f(πi)f1(πi) · · · fr(πi)Di(τi)|

= O(Hq+1‖e‖q) = O(H‖e‖1). (73)

Summing up the estimates for all the terms involved in (69), we
obtain

‖π̃i+1− π̃∗i+1‖ ≤ (1+const.H)‖π̃i− π̃∗i ‖+O(H‖e‖1)+O(Hu+1). (74)

Now, (68) follows by an application of Lemma 1. 2

LEMMA 7. Let

ε̃i := ε̃i(τi) = (π̃∗i − π̃i)− (p̃∗i − p̃i). (75)

Then for each u ≥ 0 the bound

|ε̃i| = O(Hmin(q,m)‖e‖min(q,m)) +O(Hm‖e‖m) +O(Hu) (76)

holds.

Proof. Similarly as in the proof of Lemma 6 we obtain

ε̃i+1 = ε̃i +

u∑
k=1

Hk

k!

(
FkId(π̃∗i ) − (F + D̂i)kId(π̃i) −

− (F +D∗i )kId(p̃∗i ) + (F +Di)kId(p̃i)
)

+ (0, . . . , 0, H)T +

+ [terms of order ≤ u involving G∗` or Gi,`] + O(Hu+1), (77)

where the terms involving G∗` or Gi,` are the same as in (69).
To treat the terms in the expansion of

Hk

k!
(FkId(π̃∗i )− (F+ D̂i)kId(π̃i)− (F+D∗i )kId(p̃∗i )+(F+Di)kId(p̃i)),

we derive the following estimates:

Hk

k!
|f(π∗i )− f(πi)− f(p∗i ) + f(pi)|

≤ const.H|ε̃i|+O(Hmin(q,m)+1‖e‖0), (78)

Hk

k!
|−f(πi)Di(τi)− f(p∗i )d

∗
i (τi) + f(pi)di(τi)|

= O(Hm+1‖e‖m) +O(Hmin(q,m)+k‖e‖k)
= O(Hm+1‖e‖m) +O(Hmin(q,m)+1‖e‖1). (79)
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To prove these assertions, we use the estimates

f(pi)− f(p∗i ) = O(‖e‖0), (80)

f(πi)− f(pi) = O(Hmin (q,m)), (81)

d∗i (τi)− di(τi) = O(‖e‖k), (82)

d∗i (τi) = O(Hm−k+1), (83)

−Di(τi)− d∗i (τi) + di(τi) = O(Hm−k+1‖e‖m). (84)

To show these estimates, in [8] we used Lipschitz conditions for f and
its derivatives and Lemmas 2, 3 and 5, taking into account the order of
the derivatives occurring in the respective expressions. The remaining
terms involving G∗` or Gi,` can be treated analogously as in Lemma 6.
The proof of the proposition of this lemma is thus completed using
Lemma 1. 2

For the following results, we only consider the case q ≤ m, see §4.

LEMMA 8. Let ε̃i;u(τi + t) for 0 ≤ t ≤ H denote the part of the
expansion of ε̃i(τi + t) consisting of the terms of order up to O(Hu).
For the derivatives,

|ε̃(κ)i;u (τi + t)|

=


O(Hm‖e‖m) +O(Hq‖e‖q) +O(Hu), κ = 0,
O(Hm+1−κ‖e‖m) +O(Hq‖e‖q−1+κ) +O(Hu),

κ = 1, . . . ,m− q,
O(Hm+1−κ‖e‖m) +O(Hu), κ = m− q + 1, . . . ,m

(85)

holds for 0 ≤ t ≤ H.

Proof. To prove the assertion, ε̃i;u(τi + t) is expanded similarly as in

Lemma 7. Now, in the corresponding estimates terms of the form Hk

k!

are replaced by tk−κ

(k−κ)! for the derivative of order κ, where κ ≤ k. The

estimates (85) are thus proven analogously as in Lemma 7. 2

The next lemma is used to obtain sharper bounds than those in
Lemma 8 for special choices of the points σi,j used for defect interpo-
lation, see (4). The assumption of the lemma holds for instance if the
points ρj from (5) are symmetric in the interval [0, 1].

LEMMA 9. Let y(t) be an (m + 2) times continuously differentiable
function on [t0, t0 + H]. Let p(t) be the interpolation polynomial of
degree ≤ m which is defined by

p(t0 + jh) = y(t0 + jh), j = 0, . . . ,m, (86)
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and let q(t) be any polynomial of degree ≤ m which satisfies

q′(t0 + ρjH) = y′(t0 + ρjH), j = 1, . . . ,m. (87)

If ρj satisfy
m∑
j=1

ρj =
m

2
, (88)

then for the m-th derivatives of p(t)− q(t) we have

p(m)(t0 + t)− q(m)(t0 + t) = O(h2‖y(m+2)‖), 0 ≤ t ≤ H, (89)

where ‖y(κ)‖ := maxt∈[t0,t0+H] |y(κ)(t)|.

Proof. The assertion of this lemma is an extension of results in [9],
where a similar result is derived for symmetric points ρj . The details
are given in [8].

THEOREM 1. The iteration error enew = pnew−p∗ satisfies estimates∣∣∣∣ dκdtκ enew(τi + t)

∣∣∣∣
=


O(Hm‖e‖m) +O(Hq‖e‖q) +O(Hu), κ = 0,
O(Hm+1−κ‖e‖m) +O(Hq‖e‖q−1+κ) +O(Hu+1−κ),

κ = 1, . . . ,m− q,
O(Hm+1−κ‖e‖m) +O(Hu+1−κ), κ = m− q + 1, . . . ,m

(90)

for each u ≥ 0. If the collocation abscissae ρj from (5) satisfy the
condition (88), then the estimate (90) for κ = m can be replaced by the
sharper bound∣∣∣∣ dmdtm enew(τi + t)

∣∣∣∣ = O(H2‖e‖m) +O(Hu+1−m). (91)

Proof. Define the new iteration error enew = (enew0 , enew1 , . . . , enewN1−1),
where enewi (t), i = 1, . . . , N1 − 1, is the polynomial of degree ≤ m
which interpolates εi(t) at ti,0, . . . , ti,m. Here εi(t) denotes the first n
components of ε̃i(t), where the last, vanishing component is neglected.
We rewrite enewi (t) as

enewi (t) = enewi;u (t) + (enewi (t)− enewi;u (t)),

where enewi;u (t) interpolates the first n components εi;u(t) of ε̃i;u(t),
and enewi (t)− enewi;u (t) interpolates the remainder term εi(t)− εi;u(t) =

O(Hu+1), cf. Lemma 8. From Lemma 3 we conclude

|enew(κ)
i;u (t)− ε(κ)i;u (t)| ≤ const. max

t∈Ji
|ε(κ)i;u (t)|, t ∈ Ji,
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whence

dκ

dtκ
enewi;u (t) ≤ const. max

t∈Ji

∣∣∣ε(κ)i;u (t)
∣∣∣ , t ∈ Ji, κ = 0, . . . ,m, (92)

follows by the triangle inequality.
For the interpolant of the remainder εi(t) − εi;u(t) = O(Hu+1)

Lemma 3 implies

dκ

dtκ
(enewi (t)− enewi;u (t)) = O(Hu+1−κ), t ∈ Ji, κ = 0, . . . ,m. (93)

From (92) and (93) together with Lemma 8, (90) now follows.
Finally, we prove (91). The bound O(H‖e‖m) in (90) for κ = m is

in fact a consequence of (84) when

Di(τi) = D
(k−1)
i,j (τi), d

∗
i (τi) = d

∗(k−1)
i,j (τi), di(τi) = d

(k−1)
i,j (τi). (94)

All other contributions to the bounds (90) are actually O(H2‖e‖m),
see [8].

The terms given by (94) constitute components of

ε̃i;D(τi + t) :=
∞∑
k=1

tk

k!

(
− D̂ki Id(π̃i)−D∗ki Id(π̃∗i ) +Dki Id(π̃i)

)
=

∞∑
k=1

tk

k!

(
− D̃(k−1)

i (τi)− d̃∗(k−1)i (τi) + d̃
(k−1)
i (τi)

)
=

∫ τi+t

τi

(
− D̃i(σ)− d̃∗i (σ) + d̃i(σ)

)
dσ. (95)

Now we rewrite the first n components of ε̃i(τi + t) as

εi(τi + t) = εi;D(τi + t) + (εi(τi + t)− εi;D(τi + t)),

and treat the two terms separately in the interpolation process out-
lined above. Thus, let enewi;D (t) be the polynomial of degree ≤ m which

interpolates εi;D(t) at ti,0, . . . , ti,m. Clearly, for 0 ≤ t ≤ H,

dm

dtm
(enewi (τi + t)− enewi;D (τi + t)) = O(H2‖e‖m) +O(Hu+1−m). (96)

Noting that Di(t) is the interpolation polynomial of di(t) − d∗i (t) at
σi,1, . . . , σi,m, we now apply Lemma 9 component-wise with

t0 = τi, y(τi + t) =

∫ τi+t

τi

(di,j(σ)− d∗i,j(σ))dσ,

q(τi + t) =

∫ τi+t

τi

Di,j(σ)dσ, p(τi + t)− q(τi + t) = enewi,j;D(ti + t).
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We conclude that

dm

dtm
enewi,j;D(τi + t) = O(H2‖e‖m), j = 1, . . . , n, 0 ≤ t ≤ H, (97)

if condition (88) is satisfied, since

y(m+2)(t) =
dm+1

dtm+1
(fj(pi(t))− fj(p∗i (t))) = O(‖e‖m) (98)

for t ∈ Ji, using Lipschitz conditions for the derivatives of fj(y), and
Lemma 2. Together with (96) this completes the proof of (91). 2
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