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Abstract. We discuss the numerical treatment of a nonlinear second order
boundary value problem in ordinary differential equations posed on an un-
bounded domain which represents the density profile equation for the descrip-
tion of the formation of microscopical bubbles in a non-homogeneous fluid.
For an efficient numerical solution the problem is transformed to a finite in-
terval and polynomial collocation is applied to the resulting boundary value
problem with essential singularity. We demonstrate that this problem is well-
posed and the involved collocation methods show their classical convergence
order. Moreover, we investigate what problem statement yields favorable con-
ditioning of the associated collocation equations. Thus, collocation methods
provide a sound basis for the implementation of a standard code equipped
with an a posteriori error estimate and an adaptive mesh selection procedure.
We present a code based on these algorithmic components that we are cur-
rently developing especially for the numerical solution of singular boundary
value problems of arbitrary, mixed order, which also admits to solve problems
in an implicit formulation. Finally, we compare our approach to a solution
method proposed in the literature and conclude that collocation is an easy to
use, reliable and highly accurate way to solve problems of the present type.
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1. Introduction. The singular boundary value problem we discuss here originates
from the Cahn-Hillard theory, which is used in hydrodynamics to study the behav-
ior of non-homogeneous fluids. In [8], the density profile equation for the description
of the formation of microscopical bubbles in a non-homogeneous fluid (in particu-
lar, vapor inside one liquid) is derived. Let us briefly recall how this equation is
obtained. The state of a non-homogeneous fluid (see [8] and [10]) is described by
the following system of partial differential equations:

ρt + div(ρ�v) = 0, (1)

d�v

dt
+∇(μ(ρ)− γ�ρ) = 0, (2)

where ρ, �v denote the density and the velocity of the fluid, μ represents its chemical
potential and γ is a constant. By considering the case where the motion of the fluid
is zero, the system (1), (2) is reduced to a single equation of the form

γ�ρ = μ(ρ)− μ0, (3)

where μ0 is a constant, depending on the state of the fluid. When searching for a
solution of (3) with spherical symmetry which depends only on the variable r, we
introduce as usual the polar system of coordinates in IRN and the equation (3) is
then reduced to the following ordinary differential equation (ODE):

γ

(
ρ′′ +

N − 1

r
ρ′
)

= μ(ρ)− μ0, r ∈ (0,∞). (4)

Since we consider the case of a spherical bubble, the ODE (4) is closed with the
boundary conditions

ρ′(0) = 0 (5)

(following from spherical symmetry) and

lim
r→∞ ρ(r) = ρl > 0, (6)

where ρl is the density of the liquid surrounding the bubble. In the simplest models
for non-homogeneous fluids, the chemical potential μ is a third degree polynomial,
such that the difference μ−μ0 has 3 real roots. Taking into account that μ(ρl) = μ0,
the right-hand side of (4) may be written in the form

μ(ρ)− μ0 = 4α(ρ− ℘1)(ρ− ℘2)(ρ− ρl), 0 < ℘1 < ℘2 < ρl, α > 0. (7)

Finally, in order to diminish the number of parameters in the equation we introduce
the new variable

ρ̃ =
ρ− ℘2

℘2 − ℘1
,

define the positive constant λ =
√

α
γ (℘2 − ℘1) , and denote ξ = ρl−℘2

℘2−℘1
> 0. Then,

without loss of generality, instead of (4)–(6) we can investigate the boundary value
problem

ρ′′(r) +
N − 1

r
ρ′(r) = 4λ2(ρ(r) + 1)ρ(r)(ρ(r) − ξ), (8)

ρ′(0) = 0, ρ(∞) = ξ, (9)

where, for the sake of simplicity, we write ρ instead of ρ̃. The boundary value
problem (8), (9) depends only on 3 parameters: λ, which may be chosen as λ = 1
without restriction of generality, N is the dimension of the problem, which in the
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physically meaningful case is N = 3, and ξ, which is varied in the range [0, 1] such
as to reflect different physical situations.

Note that the problem (8), (9) always has the constant solution ρ(r) ≡ ξ, which
physically corresponds to the case of a homogeneous fluid (without bubbles).

We are interested in computing a monotonously increasing solution for 0 <
r < ∞, the so called “bubble-type solution”. When such a solution exists it has
exactly one zero R in that interval, where R is interpreted as the bubble radius.
Furthermore, it can be shown that −1 < ρ(0) < 0 and −1 < ρ(r) < ξ, r > 0. The
derivative of the solution attains a maximum at some value r̂ < R, and tends to 0
at infinity. Finally, it turns out that the solution features an interior layer, which
becomes sharper for ξ → 1. All these properties have been discussed in [19] (see
also [18]).

It is worth to remark that the existence of a strictly increasing solution to the
problem (8), (9) is far from being a simple question. In [19], it was shown (using
a variational approach developed in [9]), that such a solution can exist only if ξ
satisfies 0 < ξ < 1. Furthermore, based on the results of [11], it is possible to show
that this restriction on ξ is also a sufficient condition for the existence of such a
solution. These results agree with the experimental evidence and the numerical
simulations reported, for example, in [8].

In §2 of this paper, we show that a transformation of (8), (9) to a problem posed
on the interval [0,1] yields a well-posed boundary value problem with an essential
singularity. In §3 we demonstrate that polynomial collocation can be used effec-
tively and its classical convergence orders can be observed. Moreover, we discuss
a problem formulation which yields the optimal conditioning of the associated al-
gebraic collocation equations. Finally, we introduce a Matlab collocation code
which is currently being developed for singular boundary value problems, and show
that its application to (8), (9) yields a reliable and accurate solution method. In
§4 we compare our approach to a solution method proposed in [19]. It turns out
that collocation constitutes a more favorable solution method for problems of the
present type.

2. Transformation to a finite interval. Here, we propose to solve (8) via trans-
formation to a singular boundary value problem on a finite interval. To this end,
two different approaches can be adopted: Transformation to a first order ODE via
the Euler transformation, and subsequent transformation to the interval [0, 1], or
transformation of the second order problem to [0, 1] and its direct treatment in the
second order formulation. In both cases, we approximate the solution numerically
using a collocation solver which is currently being developed for higher order ODEs,
cf. [14].

2.1. First order problem. We apply the Euler transformation

z(r) := (z1(r), z2(r))
T = (ρ(r), rρ′(r))T

in order to transform (8) to a first order system. Subsequently, we split the interval
(0,∞) = (0, 1]∪[1,∞), and transform the second subinterval to (0, 1]. Consequently,
we obtain the following singular boundary value problem for the unknown vector
z(s) = (z1(s), z2(s), z3(s) = z1(1/s), z4(s) = z2(1/s)), s ∈ (0, 1] :

z′(s) =
(

M
s 0
0 −M

s

)
z(s) +

(
f(s, z1(s), z2(s))
g(s, z3(s), z4(s))

)
, (10)
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where

M =

(
0 1
0 2−N

)
,

f(s, z1, z2) =

(
0

4λ2s(z1 + 1)z1(z1 − ξ)

)
,

g(s, z3, z4) =

(
0

−4λ2 1
s3 (z3 + 1)z3(z3 − ξ)

)
.

The boundary conditions in the new variables read

z2(0) = 0, z3(0) = ξ, z1(1) = z3(1), z2(1) = z4(1). (11)

The same transformation is carried out in detail for other boundary value problems
on semi-infinite intervals in [7].

In order to discuss the well-posedness of (10), (11) within the framework of sin-
gular boundary value problems developed in [12] and [13], we linearize the problem
at the exact solution (using structural properties derived in [19]). This results in

y′(s) =

(
N(s)
s 0

0 A(s)
s3

)
y(s), (12)

where

N(s) =

(
0 1

4λ2s2(3z21(s) + 2(1− ξ)z1(s)− ξ) 2−N

)
,

A(s) =

(
0 −2s2

−4λ2(3z23(s) + 2(1− ξ)z3(s)− ξ) (N − 2)s2

)
.

The same boundary conditions as (11) are now posed for y, but with the second one
replaced by the homogeneous relation y3(0) = 0. From the boundary conditions for
z it follows that

N(0) = M, A(0) =

(
0 0

−4λ2ξ(ξ + 1) 0

)
.

Consequently, y2(0) = y3(0) = 0 are necessary and sufficient conditions for a con-
tinuous solution of (12) to exist.

2.2. Second order problem. If instead of transforming to a first order problem,
we transform (8) to the interval [0, 1] in the second order formulation, we obtain
(cf. [16])

z′′2 (s) =
N − 3

s
z′2(s) + 4λ2 1

s4
(z2(s) + 1)z2(s)(z2(s)− ξ). (13)

Together with the original equation (8) (z1 = ρ) and the boundary conditions

z′1(0) = 0, z2(0) = ξ, z1(1) = z2(1), z′1(1) = −z′2(1) (14)

we now need to solve a boundary value problem for a second order ODE with an
essential singularity.

To check the well-posedness of this problem is not easy, since so far no the-
ory for second-order singular problems exists. The discussion in [15] shows that
this analysis is far from being trivial. However, our successful numerical compu-
tations strongly indicate that the second-order problem is also well-posed and can
be treated using our techniques. In fact, this problem statement may even display
certain advantages when compared to the first order formulation, see §3.
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3. Numerical treatment. Here, we discuss the properties of polynomial collo-
cation when applied to problems (10), (11), and (8), (13), (14), respectively. Col-
location is a widely used and well-studied standard solution method for two-point
boundary value problems, see for example [1] and the references therein. Moreover,
for singular problems, many popular discretization methods like finite differences,
Runge–Kutta or multistep methods show order reductions, thus making computa-
tions inefficient and prohibiting asymptotically correct error estimation and reliable
mesh adaptation. A further discussion of the advantages of collocation over other
numerical methods for singular boundary value problems can be found for example
in [2]. For the direct solution of problems on unbounded domains, an interesting
alternative is given by spectral and pseudo-spectral methods, using a basis of or-
thogonal functions, obtained from Chebyshev or Hermite polynomials (see [6], [20]
for the first case and [21] for the latter). However, as pointed out in [20] (p. 377) and
in [21] (p. 595), the accuracy provided by these methods depends strongly on the
choice of a scaling factor, whose optimal value varies not only with the specific equa-
tion, but also with the number of basis functions. This optimal value has usually
to be adjusted manually, which can be a very time-consuming process. Moreover,
the choice of basis functions strongly depends on special properties of the problem
at hand, as for example asymptotic behavior of the solution as the independent
variable tends to infinity. Therefore we rely on collocation as a high-order, robust,
general-purpose numerical method. Many of the properties of collocation methods
observed for the present problem hold also in other situations where problems on a
semi-infinite interval are solved in the formulation as an essentially singular problem
on a finite interval. The general principles should therefore be useful in a broad
context and the Matlab collocation code we introduce here can be successfully
applied to a variety of problems, see for example [7], [14], and [16].

The numerical approximation defined by collocation is computed as follows: On
a mesh

Δ := {τi : i = 0, . . . , N}, 0 = τ0 < τ1 · · · < τN = 1

we approximate the analytical solution by a piecewise defined collocating function

p(s) := pi(s), s ∈ [τi, τi+1], i = 0, . . . , N − 1,

where we require p ∈ Cq−1[0, 1] if the order of the underlying differential equation is
q. Here pi are polynomials of maximal degree m−1+q which satisfy the differential
equation at the collocation points

{ti,j = τi+ρj(τi+1− τi), i = 0, . . . , N − 1, j = 1, . . . ,m}, 0 < ρ1 < · · · < ρm < 1,

and the associated boundary conditions are also prescribed for p. Classical the-
ory, cf. [1], predicts that the convergence order is at least O(hm), where h :=
maxi |τi+1 − τi|. The same could be shown in [3] and [17] for first order problems
with a singularity of the first kind. For problems with an essential singularity, exten-
sive numerical evidence and partial theoretical support indicate that the methods
retain their convergence order if the collocation points are symmetric, see [5]. This
behavior is also observed for the present problem, see §3.1.

To make the computations more efficient, we additionally use an adaptive mesh
selection strategy based on an a posteriori estimate for the global error of the col-
location solution. We use a classical error estimate based on mesh halving. In this
approach, we compute the collocation solution pΔ(s) on a mesh Δ. Subsequently,
we choose a second mesh Δ2 where in every interval [τi, τi+1] of Δ we insert two
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subintervals of equal length. On this new mesh, we compute the numerical solution
based on the same collocation scheme to obtain the collocating function pΔ2(s).
Using these two quantities, we define

E(s) := 2m

1− 2m
(pΔ2(s)− pΔ(s)) (15)

as an error estimate for the approximation pΔ(s). Assume that the global error
δ(s) := pΔ(s) − z(s) of the collocation solution can be expressed in terms of the
principal error function e(s),

δ(s) = e(s)|τi+1 − τi|m +O(|τi+1 − τi|m+1), s ∈ [τi, τi+1], (16)

where e(s) is independent of Δ. Then obviously the quantity E(s) satisfies E(s) −
δ(s) = O(hm+1) and the error estimate is asymptotically correct. The experimental
investigations in §3.1 below indicate that the assumption (16) is justified for the
present problem.

Our mesh adaptation is based on the equidistribution of the global error of the
numerical solution. Thus, we define a monitor function Θ(s) := m

√E(s)/h(s),
where h(s) := |τi+1 − τi| for s ∈ [τi, τi+1]. Now, the mesh selection strategy aims
at the equidistribution of ∫ τ̃i+1

τ̃i

Θ(s) ds

on the mesh consisting of the points τ̃i to be determined accordingly, where at
the same time measures are taken to ensure that the variation of the stepsizes is
restricted and tolerance requirements are satisfied with small computational effort.
Details of the mesh selection algorithm and a proof of the fact that our strategy im-
plies that the global error of the numerical solution is asymptotically equidistributed
are given in [4].

For the solution of the boundary value problems (10), (11), and (8), (13), (14),
we use a collocation solver implemented in Matlab and equipped with the error
estimate and adaptive mesh selection strategy described above, see [14]. The solver
is designed for the solution of singular boundary value problems of arbitrary, mixed
order, which may even be stated implicitly. A description of the implementation
details and numerous examples demonstrating the favorable performance of the
code are given in [14].

3.1. Convergence and conditioning of collocation. To demonstrate the fa-
vorable properties of our collocation solver when applied for the solution of the
present problem, we first show that collocation when used on uniform grids re-
tains its classical convergence order and also shows favorable conditioning of the
associated algebraic equations. More extensive tests are reported in [15]. For this
investigation we restrict ourselves to the choice ξ = 0.5 in the boundary value
problem (8), (9). In all our computations based on collocation, the trivial solution
ρ ≡ ξ is avoided by choosing the initial profile for the solution of the nonlinear
collocation equations appropriately. In Table 1 we give the empirical convergence
orders and estimates for the condition numbers in dependence of the stepsize h for
the second order problem (8), (13), (14). The table displays the differences errj for
both solution components zj, j = 1, 2, computed on successive meshes with uni-
form interval lengths h and h/2, respectively, and the empirical convergence orders
ord computed from these. Moreover, we give estimates of the condition numbers
cond of the linear systems occurring in the Newton process for the solution of the
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algebraic collocation equations together with their orders. Finally, the values of
ρ(0) and of the bubble radius R are recorded for each stepsize. The computations
were performed using collocation at three Gaussian points. We observe that the
classical (super-)convergence order six is retained. This cannot be expected in gen-
eral for problems with an essential singularity, see [5], but the present problem can
obviously be solved reliably and with high accuracy. Even for the modest stepsizes
in Table 1 the approximation quality — reflected in the values errj and in the num-
ber of digits in ρ(0) and R that remain unaltered when the mesh is refined — gets
close to the relative machine precision eps ≈ 1.11e−16. However, the conditioning
is unfavorable in this setting and the condition number grows as 1/h6.

Table 1. Convergence and conditioning for three Gaussian points,
explicit formulation (8), (13), (14).

h err1 ord err2 ord

2−3 3.277156e−04 5.12 1.846019e−03 5.19
2−4 9.418404e−06 8.22 5.044448e−05 8.18
2−5 3.154728e−08 5.93 1.737186e−07 5.94
2−6 5.161540e−10 5.98 2.821680e−09 5.97
2−7 8.155476e−12 5.99 4.475131e−11 5.99
2−8 1.282308e−13 5.85 7.022716e−13 5.98

h ρ(0) R cond ord

2−3 −0.9712771815045126 3.072004143210495 3.181393e+11 −6.00
2−4 −0.9711237599349814 3.070093397609374 2.060489e+13 −6.00
2−5 −0.9711193495594734 3.070010564060050 1.323525e+15 −5.99
2−6 −0.9711193347866662 3.070009059103223 8.472849e+16 −5.99
2−7 −0.9711193345449644 3.070009102148822 5.419582e+18 −5.99
2−8 −0.9711193345411442 3.070009104088092 3.466736e+20 −5.99

To improve the conditioning of the collocation equations, we exploit the fact
that our code can deal with an implicit formulation of the differential equations.
Therefore, we multiply (8) by r and (13) by s4 and repeat the computations. The
results are given in Table 2. In this case, the condition numbers grow as 1/h2,
which according to [1] is optimal for second order ODEs. Thus, we observe a clear
dependence of the condition numbers on the order of the singular terms appearing
in the equations. In the implicit formulation which is within the scope of the new
code, cf. [14], the results are more favorable. However, the accuracy of the computed
results does not seem strongly affected even though condition numbers differ vastly.
A possible reason why the large discrepancy in condition numbers does not seem to
influence the obtained accuracy is given in [22]. Still, it should be advantageous to
use the implicit formulation, since bad starting values for the nonlinear equations
in conjunction with bad conditioning could lead to a failure of the nonlinear solver
to converge at all because the linear algebra may become unreliable in the presence
of large condition numbers.

For reasons of comparison, we give the analogous results for the first order prob-
lem (10), (11), where motivated by the experience with the second order problem
we again choose an implicit formulation. The convergence orders are given for the
components z1, z3 corresponding to ρ. The accuracy in the numerical results given
in Table 3 is very similar to that seen in Tables 1 and 2. However, the asymptot-
ical behavior of the condition numbers is not governed by the optimal 1/h. Now,
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Table 2. Convergence and conditioning for three Gaussian points,
implicit second order formulation.

h err1 ord err2 ord

2−3 3.277156e−04 5.12 1.846019e−03 5.19
2−4 9.418404e−06 8.22 5.044448e−05 8.18
2−5 3.154728e−08 5.93 1.737186e−07 5.94
2−6 5.161539e−10 5.98 2.821679e−09 5.97
2−7 8.155476e−12 5.99 4.475120e−11 5.99
2−8 1.282308e−13 5.71 7.024936e−13 5.95

h ρ(0) R cond ord

2−3 −0.9712771815045126 3.072004143210495 6.631216e+04 −2.00
2−4 −0.9711237599349814 3.070093397609374 2.715011e+05 −2.00
2−5 −0.9711193495594735 3.070010564060050 1.095890e+06 −1.99
2−6 −0.9711193347866661 3.070009059103223 4.395917e+06 −1.99
2−7 −0.9711193345449644 3.070009102148822 1.759544e+07 −1.99
2−8 −0.9711193345411442 3.070009104088092 7.038791e+07 −1.99

the condition numbers grow as 1/h2. Again, the accuracy of the results is largely
unaffected.

Table 3. Convergence and conditioning for three Gaussian points,
implicit first order formulation.

h err1 ord err3 ord

2−3 2.955559e−04 4.78 1.680902e−03 4.84
2−4 1.074934e−05 6.49 5.850010e−05 5.98
2−5 1.189372e−07 5.96 9.258769e−07 5.85
2−6 1.900909e−09 5.99 1.594605e−08 5.93
2−7 2.986944e−11 5.99 2.597591e−10 5.99
2−8 4.674039e−13 6.03 4.081291e−12 5.99

h ρ(0) R cond ord

2−3 −0.9712627938698611 3.071620838990447 3.232161e+04 −1.98
2−4 −0.9711244247561622 3.070238049496702 1.321965e+05 −1.99
2−5 −0.9711193911408309 3.070002169646523 5.283813e+05 −1.99
2−6 −0.9711193354454427 3.070009388355330 2.110837e+06 −1.99
2−7 −0.9711193345552939 3.070009093948309 8.434144e+06 −1.99
2−8 −0.9711193345413068 3.070009102324399 3.370697e+07 −1.99

So we conclude that the first and second order problems admit a numerical
solution with the same convergence properties and similar accuracy. However, for
the second order formulation it is possible to obtain the optimal growth behavior
of the condition numbers of the collocation equations by stating the problem in
implicit form, which is not the case for the first order problem. On the other hand,
for the formulation (10), (11), we can prove that the analytical problem is well-
posed, while for second order problems with an essential singularity the respective
theory is not yet developed far enough.

3.2. Mesh adaptation for sharp layers. The solution of (8), (9) becomes com-
putationally more challenging when the value of the parameter ξ is close to 1 in
contrast to the choice ξ = 0.5 which was used in §3.1. Even in this case, our
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collocation solver proved remarkably robust. By applying a simple continuation
strategy to obtain starting profiles for the solution of the collocation equations as
ξ → 1, we could easily compute solutions for values ξ ∈ (0, 0.9]. These feature an
interior layer around the bubble radius R which becomes sharper with growing ξ.
The solution profiles for some values of ξ are plotted in Figure 1. For convenience
of the reader, the profiles are transformed back to the original domain [0,∞) and
plotted on the truncated subinterval [0, 18].

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Solution profiles for ξ = 0.005, 0.1, . . . , 0.9.

Particularly for the solutions with sharp layers, the computations can be sped
up significantly if instead of solving the problem on a fixed grid, adaptive mesh
refinement based on our a posteriori estimate of the global error is used. We illus-
trate this point for the case ξ = 0.8. We solve the problem again using collocation
at three Gaussian points, where a relative and absolute tolerance requirement of
1e−8 is prescribed. Based on the favorable convergence properties of the colloca-
tion solution, the error estimate can be expected to be asymptotically correct and
our mesh selection procedure should achieve asymptotical equidistribution of the
global error, see also [4] and [5]. Thus, we can safely trust that the tolerances are
reliably satisfied. The final mesh contains 301 points. The stepsizes are plotted as a
function of the independent variable (transformed back to the original, unbounded
domain) in Figure 2. We see that indeed the smallest stepsizes occur near the in-
terior layer at R ≈ 7. Note that the stepsizes close to 0 appear small because of
the transformation s → 1/s used to create the plot in Figure 2. In the actual grid
resulting for (8), (13), (14), the stepsizes are quite uniform near the singularity.

To conclude this section, we give the values of ρ(0), R and the integral J defined
by

J = J(ρ) =

∫ ∞

0

(
1

2
(ρ′(r))2 +W (ρ(r))

)
rN−1 dr, (17)

W (ρ) = 4λ2

∫ ρ

ξ

(s+ 1)s(s− ξ) ds, (18)

for different values of ξ. The integral J(ρ) defines a functional, for which the
boundary value problem (8), (9) represents the Euler-Lagrange equation, in the
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Figure 2. Stepsizes generated by mesh adaptation for ξ = 0.8.

following sense: this integral converges if and only if ρ is a solution of (8), (9) (see
[19], Eq. (3.2)).

Again, collocation at three Gaussian points was used and absolute and relative
tolerances 1e−8 have been satisfied. Only in the case ξ = 0.9 we used five Gaussian
points to achieve the desired accuracy with acceptable computational effort. To
compute the value of J , we transform J to the interval [0, 1] and use numerical
quadrature of the transformed integral evaluated at our numerical solution. To this
end we truncate the integration interval to [0.002,1] to avoid the evaluation at 0
and use the adaptive quadrature routine quadl which is part of Matlab 7.0 (R14).
The tolerance for the quadrature is set to 1e−10, so that we can expect an overall
accuracy of about 8 digits for the values of ρ(0), R and J . This is also supported
by comparing the results with the computations on uniform meshes, even the first
ten digits are the same as those for the most precise results given in Table 2.

Table 4. Values of ρ(0), the bubble radius R and the integral J ,
computed to accuracy 1e−8 for ξ = 0.1, . . . , 0.9.

ξ ρ(0) R J

0.1 −0.3046629135732414 3.321895965371974 0.06423770835737890
0.2 −0.5677637625604254 2.685731317498248 0.2173942457657418
0.3 −0.7707036640095047 2.582331278595824 0.4892016493829168
0.4 −0.9031250928082184 2.720986514572336 0.9716918685380278
0.5 −0.9711193345575906 3.070009104270134 1.884169391417022
0.6 −0.9953000352054564 3.695885728381596 3.774049025090401
0.7 −0.9997788979967360 4.816886914011474 8.316634452859129

0.8 −0.9999995735610752 7.130991634527193 22.63550082997492
0.9 −0.9999999999999973 14.16875522250826 107.4896967510244

4. Comparisons. In this section, we describe an alternative approach for the nu-
merical solution of (8), (9) proposed in [19]. A comparison of the results with the
collocation methods described in §3 indicates that collocation can be applied to
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the problem more straightforwardly, and with better control of the accuracy of the
solution.

The approach developed in [19] is based on a stable shooting method, which
uses the asymptotic properties of the solution near the singularities to solve the
boundary value problem. More precisely, it is shown in [19] that equation (8)
possesses a one-parameter set of solutions which satisfy the condition ρ′(0) = 0 and
that each solution in this set may be expanded in a series of the form

ρ(r) = ρ0 +

∞∑
k=1

ρ2k(ρ0)r
2k, 0 < r ≤ δ, (19)

where ρ0 is the parameter of the set, ρ2k are coefficients which are independent of r
and can be computed recursively. Moreover, this method uses the fact that there is
another one-parameter set of solutions of equation (8) which satisfy the boundary
condition ρ(∞) = ξ and each solution in this set may be expanded in a series of
the form

ρ(r) = ξ +
1

r(N−1)/2

∞∑
k=1

Ck(r)b
ke−krτ , r ≥ r∞, (20)

where τ = 2λ
√
ξ(ξ + 1) and b < 0 is the parameter of the set. Ck are functions of

r which may be determined by substituting (20) into equation (8) and solving the
resulting Cauchy problems. In particular, in the case N = 3, it may be shown that
C1(r) ≡ 1 and this was the only term of the series (20) which was used to obtain
the numerical results in [19].

Since the considered boundary value problem has singularities at both endpoints
and the singularity at infinity is a saddle point, it is not possible to solve the problem
numerically just by shooting from one of the endpoints. Therefore, according to
the method presented in [19] the interval [δ, r∞] (where the numerical solution of
the problem is sought) is divided into two subintervals [δ, r0] and [r0, r∞] and one
auxiliary boundary value problem is solved on each sub-interval. By adding the
boundary condition ρ(r0) = 0 to each of these auxiliary problems, they can be
solved by standard shooting methods, making use of the series (19) and (20) to
approximate the solution at δ and r∞, respectively. Due to the condition imposed
on the solution of the auxiliary problems, the global solution has a root at r0, which
excludes the trivial solution ρ ≡ ξ. Moreover the solution of each auxiliary problem
must satisfy matching conditions at r0 which assure that the derivative of the global
solution is continuous on the whole interval [δ, r∞]. This algorithm was encoded in
Mathematica and the command NDSolve of this software was used to solve all
the involved initial value problems.

The results obtained by this computational method are displayed in Table 5.
These results were obtained using the absolute tolerance ε = 10−14 when applying
the shooting method to each auxiliary boundary value problem. The values of δ
and r∞ were chosen in the range [10−5, 10−3] and [7, 11], respectively, depending
on ξ. The value of δ seems not to affect the accuracy of the method substantially,
at least if it is within the mentioned range. Concerning the value of r∞, for each
value of ξ, there is an optimal value of this parameter which provides the maximal
accuracy. This optimal value (given in the last column of the table) had to be found
experimentally: r∞ was increased until the best possible correspondence with the
results in Table 4 was achieved.
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Table 5. Values of ρ(0), the bubble radius R and the integral J
defined by (17), ξ = 0.1, . . . , 0.8.

ξ ρ(0) R J r∞
0.1 −0.304745 3.32172 0.06349 7
0.2 −0.567765 2.68575 0.21340 7
0.3 −0.7707036967 2.582233132 0.48450 8
0.4 −0.9031250938 2.720986519 0.9691 8
0.5 −0.9711193346 3.070009102 1.884 9
0.6 −0.9953000354 3.695888572 3.696 9
0.7 −0.9997788981 4.816886906 8.315 10
0.8 −0.9999995737 7.130991636 22.611 11

We observe that the values for ρ(0) and R in Table 5 correspond to the results
given in Table 4 up to about seven or eight digits in general (we will discuss the less
accurate results for ξ = 0.1, 0.2 below). Since these last results are expected to be
at least eight digits accurate, we conclude that the precision achieved by collocation
seems slightly more satisfactory at this moment.

Thus, for ρ(0) and R it is possible to achieve acceptable accuracy, while the
results for J clearly favor the methods from §3. It should be stressed that there is
no way to control the error reliably using the algorithm described in this section, in
contrast to the collocation code. Rather, parameters were manually adjusted until
good correspondence with the reliable results from Table 4 was observed.

In the presence of the sharp layer for ξ = 0.9, the algorithm described in this
section failed to produce any useful results at all. This algorithm is not applicable
either for values of ξ less than 0.3. The values given in Table 5 for ξ = 0.1 and
ξ = 0.2 were obtained using a modification of this algorithm, described in [19]. The
accuracy of these results appears to be only about four digits in general.

Finally, the computational effort necessary when using the algorithm from [19]
is considerable. Even though it is not possible to assess details of the performance
because blackbox solvers from Mathematica were used to integrate the initial
value problems occurring in the course of the shooting procedure described above,
we can provide an impression of the required computational effort by noting that to
compute the results for ξ = 0.5 with δ = 10−5, r∞ = 9 it was necessary to solve 573
Cauchy problems on [δ, 1] and 481 Cauchy problems on [1, r∞]. This complexity
definitely exceeds the one necessary for the collocation approach discussed in §3.

5. Conclusions. In this paper, we have presented a Matlab collocation code
which is currently being developed for implicit, mixed order singular boundary
value problems in ordinary differential equations. As a first example to show the
advantageous properties of the solver, the density profile equation from hydrody-
namics was solved. After demonstrating how the problem can be expressed as a
well-posed singular boundary value problem on a finite interval, we showed that the
implemented collocation methods retain their classical convergence orders. Also,
optimal conditioning of the collocation equations can be achieved by posing the dif-
ferential equations in an implicit form. We also showed that using an a posteriori
error estimate and adaptive mesh selection yields reliable error control and meshes
that are denser where the solution varies strongly. Finally, comparisons with a
solution method previously presented in the literature support the proposition that
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our collocation code is comparably straightforward to use and represents an im-
provement in reliability and accuracy. These favorable properties can be expected
to prevail for a large class of singular boundary value problems, see for instance [7],
[14], and [16].
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