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We investigate the properties of dissipative full discretizations for the equations of motion associated with models of flow
and radiative transport inside stars. We derive dissipative space discretizations and demonstrate that together with specially
adapted total-variation-diminishing (TVD) or strongly stable Runge–Kutta time discretizations with adaptive step-size control
this yields reliable and efficient integrators for the underlying high-dimensional nonlinear evolution equations. For the most
general problem class, fully implicit SDIRK methods are demonstrated to be competitive when compared to popular explicit
Runge–Kutta schemes as the additional effort for the solution of the associated nonlinear equations is compensated by the
larger step-sizes admissible for strong stability and dissipativity. For the parameter regime associated with semiconvection we
can use partitioned IMEX Runge-Kutta schemes, where the solution of the implicit part can be reduced to the solution of an
elliptic problem. This yields a significant gain in performance as compared to either fully implicit or explicit time integrators.
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1 The ANTARES Code

In this paper we discuss the numerical properties of implicit total–variation–diminishing (TVD) Runge–Kutta methods for
simulations of stellar convection and diffusion. The ultimate goal of this investigation is to improve the computational effi-
ciency of simulations in highly challenging parameter regimes which arise for example in A-type stars by breaking the limits
imposed on the time step-sizes by the TVD requirement for classical explicit time integrators. The fundamental equation of
motion is the fully compressible Navier–Stokes equation which describes momentum conservation. The model is completed
by a continuity equation which ensures conservation of mass, and a total energy equation which describes conservation of
the latter. The equations incorporate a radiative source term Qrad which is determined as the stationary limit of the radiative
transfer equation. The equations of hydrodynamics are closed by the equation of state which describes the relation between
the thermodynamic quantities. For the initial condition, a slightly perturbed static model atmosphere or envelope is used
which is equipped with a small seed velocity field or density perturbation to start dynamics away from equilibrium. Boundary
conditions are based on the assumption that all quantities are periodic in both horizontal directions. For the hydrodynamical
equations, closed (Dirichlet) boundary conditions at the upper and lower boundary of the computational domain are used, but
a recent development is to replace these by open (Robin) boundary conditions. For the radiative transfer equation, incoming
radiation at the boundary of the computational domain must be specified. For details of the model see [1, 2].

The ANTARES code (A Numerical Tool for Astrophysical RESearch [1]) we discuss here solves this system of equations
numerically in either one, two, or three spatial dimensions on a rectangular grid. ANTARES allows the definition of several
grids which can be nested inside each other to improve resolution in regions of interest. The code is fully scalable on parallel
architectures with MPI and OpenMP directives.

For the spatial discretization of the hyperbolic terms, discretizations of ENO (essentially non-oscillatory) type [3, 4] are
implemented. These methods use adaptive stencils which are chosen such as to avoid spurious oscillations in the computed
solution. The spatial derivatives are calculated for each direction separately.

The parabolic terms are discretized by dissipative finite difference schemes of fourth order. The radiative heating rate is
determined by the short characteristics method, or by means of a diffusion approximation, where appropriate, while all other
source terms are evaluated at the cell centers. For the time integration, total variation diminishing Runge–Kutta methods are
employed. In this work we put forward fully implicit singly diagonally implicit (SDIRK) Runge–Kutta methods ( [5] and
references therein) and implicit–explicit (IMEX) partitioned Runge–Kutta methods ( [6–8] and references therein) to replace
the classical explicit integrators [9, 10].
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2 Numerical methods for differential equations

2 Comparisons of TVD Runge–Kutta Methods

In an abstract setting, we now discuss the numerical solution of the (autonomous) initial value problem y′(t) = F (y(t)), y(0) =
y0 by an implicit s-stage Runge–Kutta method.

Ferracina & Spijker [5] introduce two classes of s-stage Singly Diagonally Implicit Runge–Kutta (SDIRK) methods with
the TVD property of convergence orders p = 2 and p = 3, respectively. The CFL numbers, which represent a step-size
restriction ensuring the TVD property, for these schemes were proven to be equal to 2s for each s ≥ 1 for the second order
case and s− 1 +

√
s2 − 1 for the third order methods.

For the parameter regime associated with the semiconvection problem [11], the equations of motion can be recast as a
partitioned problem ẏ(t) = F (y(t)) + G(y(t)), y(0) = y0, which suggests to apply partitioned implicit–explicit Runge–
Kutta methods. [6–8] put forward and analyse the TVD property for several schemes of this type.

The methods introduced above are analyzed with respect to their linear stability and dissipativity [12], which characterizes
the step-sizes which ensure a damping of highly oscillatory modes for a given spatial discretization. We compare the left
boundaries of the stability regions, the points where the amplification factor g characterizing dissipativity might start oscil-
lating (g = 0, where an asterisk indicates a zero with a sign change) or even amplifies oscillations (|g| = 1) for a dissipative
fourth-order space discretization put forward and analyzed in [13], and additionally the error constants C. The methods we
compare are three IMEX methods characterized by parameters ‘SSPk(s, σ, p)’ [6], the forward Euler method, two classical
explicit integrators [9, 10] and the fully implicit SDIRK methods [5]. It turns out that the largest time steps are admissible for
the SDIRK methods, which however has to be contrasted with the additional effort for the solution of the associated nonlinear
equations. For the IMEX methods, the nonlinear equations can be reduced to the solution of generalized Poisson equations
which implies some moderate computational effort. The classical explicit integrators cannot be recommended based on this
analysis.

Method Stability g = 0 |g| = 1 C
IMEX SSP2(2, 2, 2) −∞ 0.452∗ — 5.17
IMEX SSP2(3, 3, 2) −∞ 0.455∗ — 8.05
IMEX SSP3(3, 3, 3) −3.248 0.348∗ 0.609 11.6
Forward Euler −2 0.187∗ 0.375 12.6
Osher/Shu 2 −2 — 0.375 16.2
Osher/Shu 3 −2.512 0.299∗ 0.471 22.8
SDIRK p = 2, s = 2 −∞ 0.75 — 1.64
SDIRK p = 2, s = 3 −∞ 1.125∗ — 0.72
SDIRK p = 2, s = 4 −∞ 1.5 — 0.40
SDIRK p = 3, s = 2 −12.93 — 2.424 1.43
SDIRK p = 3, s = 3 −37.10 1.746∗ 6.955 0.56
SDIRK p = 3, s = 4 −60.98 — 11.44 0.30

Table 1 Summary of the analysis of TVD integrators.
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