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THE CONVERGENCE OF SHOOTING METHODS FOR

SINGULAR BOUNDARY VALUE PROBLEMS

OTHMAR KOCH AND EWA B. WEINMÜLLER

Abstract. We investigate the convergence properties of single and multiple
shooting when applied to singular boundary value problems. Particular atten-
tion is paid to the well-posedness of the process. It is shown that boundary
value problems can be solved efficiently when a high order integrator for the
associated singular initial value problems is available. Moreover, convergence
results for a perturbed Newton iteration are discussed.

1. Preliminaries

We discuss the numerical solution of the following nonlinear singular boundary
value problems of the first order:

y′(t) =
M(t)

t
y(t) + f(t, y(t)), t ∈ (0, 1],(1.1a)

g(y(0), y(1)) = 0,(1.1b)

y ∈ C[0, 1],(1.1c)

where y and f are vector-valued functions of dimension n, M is an n × n matrix
and g : Rn× Rn → Rr, r ≤ n, is a smooth function.

The search for a method to solve problems (1.1) is strongly motivated by numerous
applications from physics, see [3], [5], [6], chemistry, cf. [30], and mechanics (buck-
ling of spherical shells, [4], [7]), as well as research activities in related areas ([8],
[26], [27], [28]).

Our aim is to investigate the convergence of shooting procedures (see [1] or [18])
for the approximate solution of (1.1), based on an efficient numerical solution of
the associated singular initial value problems.

The unsatisfactory convergence properties of direct higher order methods are the
main motivation to use shooting methods for the solution of singular boundary
value problems. For collocation schemes only the stage order can be observed,
the superconvergence does not hold in general, see [16]. In presence of singularity
other direct higher order methods (finite differences) show order reductions and be-
come inefficient. Moreover, the standard acceleration techniques based on low-order
methods do not work efficiently either, because in general, a proper asymptotic error
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expansion for the basic scheme does not exist, cf. [12]. Moreover, multiple shooting
seems to be a particularly attractive alternative, because within its framework one
can use different controlling mechanisms close to and away from the singular point.
In the context of initial value problems, we have already gained some information
on how the usual strategies for error estimation and grid selection work when they
are applied to singular problems. These observations suggest that we will possibly
need to control the global error close to the singularity and switch to the control of
the local error away from the singular point. This idea can be easily realized in a
code based on the multiple shooting approach.

For the solution of initial value problems, various standard methods have been
investigated. It turns out, however, that numerical methods widely used for the
solution of regular initial value problems show order reductions in the singular case,
see [15] for a discussion of multistep methods, and [17] for explicit Runge-Kutta
schemes. Therefore, we use Iterated Defect Correction (IDeC) based on the implicit
Euler method for the solution of the involved initial value problems. This acceler-
ation technique was investigated for regular problems in [9], [10] and [11]. When
applied to singular initial value problems, this method shows its classical conver-
gence behavior, which means that any convergence order O(hp) can be obtained
comparatively cheaply for sufficiently smooth data, see [22] for the analysis and [2],
[21] for numerical evidence. Throughout this paper we will therefore assume that
a high-order method for the solution of initial value problems is available (without
referring to any details of the procedure).

The analytical properties of the boundary value problems (1.1) have been discussed
in full detail in [14]. The analysis of the related initial value problems has been given
in [20] and [21]. In Section 2 we briefly recapitulate analytical results important for
the subsequent discussion of the numerical methods. Single shooting is studied for
the linear case and for the nonlinear case in Section 3 and Section 4, respectively. In
Section 5 the convergence of multiple shooting and Newton’s iteration is considered.
Numerical experiments illustrating the theory are discussed in Section 6.

In the sequel, the following notation is used. We denote by Cn the space of complex-
valued vectors of dimension n and use | · | to denote the maximum norm in Cn,

|x| = |(x1, x2, · · · , xn)
T | := max

1≤i≤n
|xi|.

Cp
n[0, 1] is the space of complex vector-valued functions which are p times continu-

ously differentiable on [0, 1]. For every function y ∈ C0
n[0, 1] we define the maximum

norm,

‖y‖ := max
0≤t≤1

|y(t)|.
We will also use the maximum norm restricted to the interval [0, δ], 0 < δ ≤ 1,

‖y‖δ := max
0≤t≤δ

|y(t)|.

Cp
n×n [0, 1] is the space of complex-valued n× n matrices with columns in Cp

n[0, 1].

For a matrix A = (aij)
n
i,j=1, A ∈ C0

n×n [0, 1], ‖A‖ is the induced norm,

‖A‖ := max
0≤t≤1

|A(t)| = max
0≤t≤1

⎛
⎝ max

1≤i≤n

n∑
j=1

|aij(t)|
⎞
⎠ ,
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and ‖A‖δ is defined in an obvious way. Where there is no confusion we will omit
the subscripts n and n× n and write C = C[0, 1] = C0[0, 1].

For a constant matrix A the kernel of A is denoted by ker(A). Throughout, we
write In for the identity matrix in Rn×n. Moreover, span(A) denotes the closed
hull of the columns of A, where A is an arbitrary matrix.

For the numerical analysis, we define equidistant grids of the form

Δh := (t0, t1, . . . , tN ),

where ti = ih, i = 0, . . . , N, h = 1
N , and grid vectors

uh := (u0, . . . , uN ) ∈ C
(N+1)n.

The norm on the space of grid vectors is defined as

‖uh‖h := max
0≤k≤N

|uk|.

For a continuous function y ∈ C[0, 1], we denote by Rh the projection onto the
space of grid vectors,

Rh(y) := (y(t0), . . . , y(tN )).

2. Analysis of Singular Boundary and Initial Value Problems

In this section we consider the singular boundary value problem (1.1). The analyt-
ical properties of (1.1) have been studied in [14]. Here, we assume all eigenvalues of
M(0) to have nonpositive real parts. Moreover, the only eigenvalue of M(0) on the
imaginary axis is zero. These restrictions are necessary to ensure the well-posedness
of the initial value problems associated with (1.1).

First, we treat the linear case,

y′(t) =
M(t)

t
y(t) + f(t), t ∈ (0, 1],(2.1a)

Ba2y(0) +Bb2y(1) = β2,(2.1b)

y ∈ C[0, 1],(2.1c)

where Ba2, Bb2 ∈ R
r×n, r < n, are constant matrices, and β2 ∈ R

r is a constant
vector.

Throughout, we assume M ∈ C1[0, 1]. Equivalently, we can rewrite M(t) and
obtain

(2.2) M(t) = M(0) + tC(t)

with a continuous matrix C(t).

Let X0 be the eigenspace of M(0) corresponding to the eigenvalue λ = 0 and let R
be a projection1 onto X0. We define

S := In −R,

where we denote by In the n × n identity matrix. The necessary and sufficient
condition for y to be continuous on [0, 1] is

Sy(0) = 0.

1R is called spectral projection.
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This yields

y(0) = (S +R)y(0) = Ry(0),

and due to

M(0)y(0) = MRy(0) = 0,

it follows that (2.1c) is equivalent to y ∈ ker(M(0)). This can also be expressed as

Ba1y(0) = 0,

where Ba1 ∈ R(n−r)×n consists of the linearly independent rows of M(0). These
conditions are augmented by (2.1b) to yield a unique solution, see below.

We denote by Ẽ the n × r matrix consisting of the linearly independent columns
of R. Moreover, let Φ̄(t) be the fundamental solution matrix of the initial value
problem

Φ̄′(t) =
M(t)

t
Φ̄(t), t ∈ (0, 1],(2.3a)

Φ̄(0) = Ẽ.(2.3b)

Consequently, the necessary and sufficient condition for the problem (2.1) to have
a unique solution is that the r × r matrix Q̄,

(2.4) Q̄ := Ba2Ẽ +Bb2Φ̄(1)

is nonsingular. If f is k times continuously differentiable and M ∈ Ck+1[0, 1], then
y ∈ Ck+1[0, 1] holds.

For the nonlinear problem2

y′(t) =
M(t)

t
y(t) + f(t, y(t)), t ∈ (0, 1],(2.5a)

g(y(0), y(1)) = 0,(2.5b)

y ∈ C[0, 1],(2.5c)

the analogous smoothness properties can be shown. Let us make the following
assumptions:

(1) f : D1 → Rn and g : D2 → Rm are nonlinear mappings, where D1 ⊆
[0, 1] × Rn and D2 ⊆ Rn × Rn are suitable sets. Motivated by the linear
case, we choose m = r.

(2) Equation (2.5) has a solution y ∈ C[0, 1]∩C1(0, 1]. With this solution and
a ρ > 0 we associate the spheres

Sρ(y(t)) := {z ∈ R
n : |y(t)− z| ≤ ρ}

and the tube

Tρ := {(t, z) : t ∈ [0, 1], z ∈ Sρ(y(t))}.
(3) f(t, z) is continuously differentiable with respect to z, and ∂f(t,z)

∂z is continu-
ous on Tρ. Also, g(v, w) is continuously differentiable on Sρ(y(0))×Sρ(y(1)).

2Again, M(0) has only eigenvalues with negative real parts or the eigenvalue 0.
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(4) The solution y(t) is isolated. This means that

u′(t) =
M(t)

t
u(t) +A(t)u(t), t ∈ (0, 1],

Ba2u(0) +Bb2u(1) = 0,

u ∈ C[0, 1],

where

A(t) :=
∂f(t, z)

∂z
(t, y(t)),

Ba2 :=
∂g(v, w)

∂v
(y(0), y(1)), Bb2 :=

∂g(v, w)

∂w
(y(0), y(1)),

has only the trivial solution.

Under these assumptions and for f ∈ Ck(Tρ), M ∈ Ck+1[0, 1], the solution y of
(2.5) satisfies y ∈ Ck+1[0, 1].

For further details and proofs see [14].

As a special case of a boundary value problem we now consider the following singular
initial value problem:

z′(t) =
M(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1],(2.6a)

Ba2z(0) = β2,(2.6b)

z ∈ C[0, 1],(2.6c)

where z, f are vector-valued functions of dimension n, M ∈ C1[0, 1], Ba2 is an r×n
matrix and β2 is a vector of dimension r ≤ n.

The analytical properties of (2.6) have been investigated in full detail in [20] and
[21]. In this analysis we assume that f(t, z) is continuous and satisfies a Lipschitz-
condition with respect to z on [0, 1]×Rn. We require that M(0) has no purely imag-
inary eigenvalues or eigenvalues with positive real parts, and show that this restric-
tion is necessary for (2.6) to be well-posed. Moreover, the condition M(0)z(0) = 0
is necessary and sufficient for z ∈ C[0, 1]. Also, the solution of (2.6) is unique iff

the matrix Ba2Ẽ is nonsingular. If f ∈ Ck([0, 1] × R
n) and M ∈ Ck+1[0, 1], the

solution satisfies z ∈ Ck+1[0, 1]3.

3. Single Shooting — Linear Problems

We first consider the linear boundary value problem

y′(t) =
M(t)

t
y(t) + f(t), t ∈ (0, 1],(3.1a) (

Ba1

Ba2

)
y(0) +

(
0

Bb2

)
y(1) =

(
0
β2

)
,(3.1b)

where Ba1 ∈ R(n−r)×n consists of the linearly independent rows of M(0). As
mentioned in Section 2 we assume that all eigenvalues of M(0) have negative real
parts or are equal to zero. Moreover, we assume the above boundary value problem

3Most of these results are direct consequences of the analysis for (2.5). It should be stressed,
however, that under the above assumptions, even the existence of a unique solution of the nonlinear
initial value problem can be shown.
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to be well-posed. The necessary condition for the problem to be well-posed can be
expressed as M(0)y(0) = 0, and this restriction is reflected in the special form of
the partially separated boundary conditions (3.1b). Also the matrix Q̄ from (2.4)
has to be nonsingular. The exact solution of the boundary value problem (3.1)
solves the equivalent initial value problem

z′(t) =
M(t)

t
z(t) + f(t), t ∈ (0, 1],(3.2a)

z(0) = z0,(3.2b)

where z0 satisfies

z0 = Φ̄(0)s̄+ v(0) = Ẽs̄,

and the parameter vector s̄ ∈ Rr is suitably chosen. The matrices Φ̄ and Ẽ are
specified in (2.3) and v is the solution of the inhomogeneous initial value problem,

v′(t) =
M(t)

t
v(t) + f(t), t ∈ (0, 1],(3.3a)

v(0) = 0.(3.3b)

The parameter vector s̄ can be computed from the system

(3.4) Q̄s̄ = β̄,

where Q̄ is given in (2.4) and

β̄ = β2 −Bb2v(1).

Note that (3.4) has a unique solution iff the boundary value problem is well-posed.

This approach to compute a shooting parameter s̄ ∈ Rr with r < n is made
possible by the special form of the boundary conditions (3.1b). For the singular

problem (3.1a), the restriction to starting vectors z0 ∈ span(Ẽ) = ker(M(0)) is
even necessary to obtain a well-posed initial value problem. This method especially
designed for problems with partially separated boundary conditions is called reduced
superposition or method of complementary functions, cf. [1], [19].

In order to solve (3.1) we choose an equidistant grid Δh, and solve all initial value
problems involved in the algorithm described above by applying a solution method
with level of accuracy O(hp) to obtain numerical approximations Q̄h and β̄h for Q̄
and β̄. The numerical approximation s̄h for s̄ is then determined from the perturbed
system of linear equations

Q̄hs̄h = (Q̄+ E)s̄h = β̄h = β̄ + e,

where

|E|, |e| = O(hp).

It can easily be shown using Banach’s Lemma that

|s̄h − s̄| = O(hp)

if we choose h in such a way that |Q̄−1E| < 1 holds. Finally, the solution z̃h on the
grid Δh is determined by solving the perturbed initial value problem

z̃′(t) =
M(t)

t
z̃(t) + f(t), t ∈ (0, 1],(3.5a)

z̃(0) = zh,0 := Ẽs̄h.(3.5b)



SHOOTING FOR SINGULAR BOUNDARY VALUE PROBLEMS 7

The error function

ε(t) = z(t)− z̃(t)

satisfies the homogeneous initial value problem,

ε′(t) =
M(t)

t
ε(t), t ∈ (0, 1],(3.6a)

ε(0) = ε0 := z(0)− z̃(0),(3.6b)

and equivalently, it satisfies the integral equation (the matrix C(t) is given via
(2.2)),

ε(t) = ε0 + t

∫ 1

0

τ−M(0)C(τt)ε(τt) dτ,

see [20] and [21]. For a sufficiently small δ > 0 this yields

‖ε‖δ ≤ const. |ε0| ≤ const. |Ẽ||s̄h − s̄| = O(hp).

Since (3.6a) is a regular problem on [δ, 1], it follows from classical theory that the
same result holds on the entire interval [0, 1].

The problem (3.5) is well-posed and can be solved in a stable way. This means that
its numerical solution z̃h satisfies

‖z̃h − Rh(z̃)‖h = O(hp),

and finally,

‖z̃h −Rh(z)‖h = ‖z̃h −Rh(y)‖h = O(hp).

Consequently, the approximation for the solution of the singular boundary value
problem obtained by the shooting method, converges with the order of accuracy of
the solver used for the approximation of the underlying initial value problem.

4. Single Shooting — Nonlinear Problems

Now we investigate the nonlinear boundary value problem

y′(t) =
M(t)

t
y(t) + f(t, y(t)), t ∈ (0, 1],(4.1a)

Ba1y(0) = 0,(4.1b)

g(y(0), y(1)) = 0,(4.1c)

where Ba1∈R(n−r)×n consists of the linearly independent rows ofM(0), and g(v, w)
is a smooth r-dimensional function. We assume that there exists an isolated solution
y ∈ C1[0, 1] of (4.1), and that the only eigenvalue of M(0) with nonnegative real
part is zero.

The boundary value problem (4.1) is equivalent to the initial value problem

z′s̄(t) =
M(t)

t
zs̄(t) + f(t, zs̄(t)), t ∈ (0, 1],(4.2a)

zs̄(0) = Ẽs̄,(4.2b)

where s̄ is determined from the nonlinear system of equations

(4.3) F (s̄) := g(Ẽs̄, zs̄(1)) = 0.

Again, the choice zs̄(0) = Ẽs̄, where Ẽ is a basis of the kernel of M(0), is equivalent
to the condition (4.1b).
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We solve (4.3) using Newton’s method. For regular boundary value problems, it
has been shown in [32] that the Newton iteration is well-defined and converges
quadratically, provided that its starting value is sufficiently close to s∗ such that
y(0) = Ẽs∗. We now extend this result to singular problems and to the perturbed
Newton iteration resulting from the numerical solution of the involved initial value
problems.

For a suitable initial guess s̄0 the Newton iteration for (4.3) is given by

(4.4) A(s̄m)(s̄m+1 − s̄m) = −g(zs̄m(0), zs̄m(1)), m = 0, 1, . . . ,

where

A(s̄m) =
∂

∂s̄m
g(zs̄m(0), zs̄m(1))

=
∂g(v, w)

∂v
(zs̄m(0), zs̄m(1))Ẽ +

∂g(v, w)

∂w
(zs̄m(0), zs̄m(1))

∂zs̄m(1)

∂s̄m
.

If zs̄m(t) is differentiable with respect to s̄m, x(t) = ∂zs̄m (t)
∂s̄m can be computed by

solving the matrix initial value problem

x′(t) =
M(t)

t
x(t) +

∂f(t, z)

∂z
(t, zs̄m(t))x(t), t ∈ (0, 1],(4.5a)

x(0) = Ẽ.(4.5b)

Now we show that for a smooth function f(t, z), zs̄ depends smoothly on s̄.

Lemma 4.1. If f(t, z) is continuous on [0, 1] × Rn and two times continuously
differentiable with respect to z with bounded derivatives, then the solution zs̄ of
(4.2) is two times continuously differentiable with respect to s̄.

Proof. It follows from [20] and [21] that x from (4.5) satisfies the integral equation

x(t) = Ẽ + t

∫ 1

0

τ−M(0) ∂f(t, z)

∂z
(τt, zs̄(τt))x(τt) dτ

+ t

∫ 1

0

τ−M(0)C(τt)x(τt) dτ.

For a sufficiently small δ1 this equation has a unique continuous (with respect to t)
solution in [0, δ1]. The above equation is equivalent to

(In −K)x(t) = Ẽ,

where

(Kx)(t) := t

∫ 1

0

τ−M(0) ∂f(t, z)

∂z
(τt, zs̄(τt))x(τt) dτ + t

∫ 1

0

τ−M(0)C(τt)x(τt) dτ

is contracting on [0, δ1]. Consequently, the mapping s �→ x(t)s is linear and bounded
for all t ∈ [0, δ1].

For the second derivative, we formally differentiate the above integral equation and
show that the resulting equation has a continuous solution (a bounded bilinear map-
ping) on an interval [0, δ2]. Thus, the statement follows on [0, δ], δ := min{δ1, δ2}.
On the interval [δ, 1], classical theory yields the result, cf. [33]. �
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Remark: We assumed that the boundary value problem (4.1) has an isolated solu-
tion and therefore it would be sufficient to require the smoothness and boundedness
properties of f(t, z) to hold merely on a tube [0, 1] × {y ∈ Rn : |y| ≤ R} with a
sufficiently large R. This can be easily seen from estimates derived in [20] and
[21]. For reasons of simplicity however, we will throughout the paper require the
assumptions to hold on the whole domain [0, 1]× Rn.

In order to show that the Newton iteration (4.4) is well-defined and converges
quadratically in a neighborhood of the isolated solution, we only have to prove
that the matrix A(s̄∗) is nonsingular at s̄∗ associated with the isolated solution z,

z(0) = Ẽs̄∗. This follows immediately from [14]. We formulate this result in the
next theorem.

Theorem 4.2. Let f(t, z) be continuous on [0, 1] × Rn, two times continuously
differentiable with respect to z with bounded derivatives, and g(v, w) ∈ C2(Rn×Rn).
Then the Newton iteration (4.4) is well-defined and converges quadratically for a
starting-value s̄0 sufficiently close to the value s̄∗ associated with an isolated solution
of (4.2).

We now shall formulate an analogous result for the perturbed version of the Newton
iteration; the initial value problems (4.2) and (4.5) can in general be solved only
with a certain level of accuracy, say O(hp), on the grid Δh. We now interpolate
(componentwise) the errors from these computations by a piecewise linear function
and assume that the continuous function zs̄(t) + e1(t) interpolates the numerical
solution of (4.2). Then

∂f(t, z)

∂z
(t, zs̄(t) + e1(t)) =

∂f(t, z)

∂z
(t, zs̄(t)) + E1(t), ‖E1‖ = O(hp)

if ∂2f(t,z)
∂z2 is bounded. Consequently, the approximation for the solution of (4.5) is

the numerical solution x̃h of a perturbed initial value problem

x̃′(t) =
M(t)

t
x̃(t) +

∂f(t, z)

∂z
(t, zs̄m(t))x̃(t) + E1(t)x̃(t), t ∈ (0, 1],(4.6a)

x̃(0) = Ẽ.(4.6b)

Using essentially the same arguments for x(t) − x̃(t), and making use of the fact
that x(t) is bounded (cf. Lemma 4.1), we can show that for a sufficiently small
0 < δ ≤ 1,

‖x− x̃‖δ ≤ const. ‖E1‖δ,
and classical theory yields

‖x− x̃‖ ≤ const. ‖E1‖
for the whole interval [0, 1]. Therefore we can conclude that (4.5) can be solved
with a level of accuracy O(hp),

‖Rh(x) − x̃h‖h = O(hp).

If we assume that the first and second derivatives of g(v, w) are bounded as well,
we can derive similar expansions for the numerical approximations Anum(s̄) for the
system matrix A(s̄) and the right-hand side of (4.4),

Anum(s̄) = A(s̄) + E2(s̄), |E2(s̄)| = O(hp),

−g(zs̄(0), zs̄(1) + e1(1)) = −g(zs̄(0), zs̄(1)) + e2(s̄), |e2(s̄)| = O(hp).
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Thus, the numerical realization of the iteration (4.4) on a fixed grid Δh results in
a perturbed iteration

(4.7) (A(s̄m) + E2(s̄
m))(s̄m+1 − s̄m) = −g(zs̄m(0), zs̄m(1)) + e2(s̄

m),

where |E2(s̄
m)|, |e2(s̄m)| = O(hp) for sufficiently small h and s̄m sufficiently close

to the true solution s̄∗ of (4.3) associated with an isolated solution of the boundary
value problem (4.1).

For a perturbed Newton iteration the following result holds.

Theorem 4.3. For the solution of the nonlinear operator equation

(4.8) F (s) = 0

we consider the perturbed Newton iteration

(4.9) (F ′(sm) + E(sm))(sm+1 − sm) = −F (sm) + e(sm).

Assume that there exists a solution s∗ of (4.8) and that (A1) to (A6) hold4 in a
suitably chosen closed ball B with center s∗ and radius r:

(A1) ‖E(s)‖, ‖e(s)‖ ≤ ε, for ε small and s ∈ B,
(A2) ‖F (s)‖ ≤ δ0 ∀s ∈ B,
(A3) F (s) ∈ C2(B) and ‖F ′′(s)‖ ≤ K ∀s ∈ B,
(A4) F ′(s∗) is nonsingular and ‖F ′(s∗)−1‖ ≤ B0,
(A5) B0r < 1,
(A6) B0ε

1−B0r
< 1.

This implies that

• ‖sm+1 − s∗‖ ≤ const. (‖sm − s∗‖2 + ε),
• for ‖sm − s∗‖ 
 ε, convergence is quadratic,
• near s∗ convergence is only linear,
• sm approaches a ball E with center s∗ and radius r∗ = O(ε),
• sm is confined to E for sufficiently large m, but the sequence does not con-
verge to a single point in E in general.

Proof. This is a generalization of a standard result (cf. [24]).

Using Banach’s Lemma we can conclude from the assumption (A6),

‖F ′(s)−1E(s)‖ < 1, s ∈ B

and hence

(F ′(s) + E(s))−1 = F ′(s)−1 + E1(s), ‖E1‖ ≤ const. ε.

Thus, the iteration (4.9) reads

(4.10) F (sm) + F ′(sm)(sm+1 − sm) = e1(s
m), m = 0, 1, . . . ,

where

‖e1(s)‖ ≤ c1ε, ∀s ∈ B.

We consider s in a closed ball B̃ around s∗ with a radius r̃ ≤ r such that

‖F ′(s)− F ′(s∗)‖ ≤ ε1, s ∈ B̃

4Note that the different operator norms for F and its derivatives are all indiscriminately de-
noted by ‖ · ‖.
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and ε1 < 1
2B0

. If we write a(sm) := sm+1, then for any s ∈ B̃ and the associated

a(s) computed from (4.10) we have

‖a(s)− s∗‖ ≤ 2B0

(
1

B0
− ε1

)
‖a(s)− s∗‖ ≤ 2B0‖F ′(s)(a(s) − s∗)‖

= 2B0‖F ′(s)(a(s)− s∗)− F ′(s)(a(s) − s)− F (s) + e1(s) + F (s∗)‖
= 2B0‖F (s∗)− F (s)− F ′(s)(s− s∗) + e1(s)‖

≤ 2B0

(∫ 1

0

‖F ′(s+ τ(s∗ − s))− F ′(s)‖ dτ‖s∗ − s‖+ ‖e1(s)‖
)

≤ 2B0(ε1‖s− s∗‖+ c1ε)

< ‖s− s∗‖, if 2B0c1ε < (1− 2B0ε1)‖s− s∗‖,
which means that the iteration (4.10) approaches s∗ as long as the order of magni-
tude of the perturbation is small compared to ‖s− s∗‖.
Since F ′ satisfies a Lipschitz condition with constant K, we can conclude from

‖F ′(s+ τ(s∗ − s))− F ′(s)‖ ≤ K‖s− s∗‖
that

‖a(s)− s∗‖ ≤ 2B0K‖s− s∗‖2 + const. ε,

which means that when the distance between s and the true solution s∗ is large
compared to the size of the perturbation, quadratic convergence can be observed.

Near s∗, we interpret (4.10) as a contracting iteration

sm+1 = G(sm).

G is contracting with constant L := B2
0Kδ0, because the bound δ0 for F (s) can be

made arbitrarily small for s near to s∗. With ε2 := ‖F ′(s)−1‖c1ε
1−L it is easy to see

that the following estimates hold:

‖sm+1 − s∗‖ < ‖sm − s∗‖, for ‖sm − s∗‖ > ε2,

‖sm − s∗‖ ≤ ε2, for all sufficiently large m.

For a proof see [31]. �

Remark: Results similar to the last theorem are numerous in the literature. [13]
or [19] for example give proofs of the quadratic convergence of the process if the
exact quantities are used. However, the point that the convergence rate drops
to 1 near the approximate solution when the numerical quantities are involved is
not addressed there. For scalar problems, considerations for a perturbed Newton
iteration can be found in [25].

It is clear from the previous considerations that for smooth functions f and g and
for a sufficiently small step-size h the assumptions from Theorem 4.3 hold. Thus
the following main result holds.

Theorem 4.4. Let f(t, z) be continuous on [0, 1]×Rn, and two times continuously
differentiable with respect to z with bounded derivatives, and g(v, w) ∈ C2(Rn×Rn),
with bounded derivatives. Then the perturbed Newton iteration (4.7) resulting from
the numerical solution of (4.1) is well-defined for a suitable initial guess. The iter-
ation converges to an approximation of the true initial value of an isolated solution
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with order of accuracy O(hp) provided that h is sufficiently small. Moreover, the
convergence of (4.7) is linear near the true solution and quadratic otherwise.

Having this approximation, the numerical solution z̃h can be computed in a stable
way and the following estimate holds:

‖z̃h −Rh(y)‖h = O(hp).

Proof. Clearly, it only remains to show that the nonlinear problem (4.2) is stable
with respect to perturbations in the initial value. This follows from

zs̄(t) = Ẽs̄+ t

∫ 1

0

τ−M(0) (C(τt)zs̄(τt) + f(τt, zs̄(τt))) dτ

on noting that the right-hand side of the above equation is a contraction for t ∈
[0, δ], see [20] or [21]. �

Remark: In practice, the entries of the Jacobian A(s) are often approximated by
finite differences with a suitably small increment δ. This does not change the above
considerations substantially. Rather, the same reasoning leads to an estimate

‖z̃h −Rh(y)‖h = O(hp) +O(δ)

for sufficiently small h and δ.

5. Multiple Shooting

We begin this section with the analysis of the linear problem (3.1). For a (not
necessarily equidistant) mesh

0 = τ0, τ1, . . . , τk = 1

we define the family of initial value problems on the intervals Jj := [τj , τj+1], j =
0, . . . , k − 1,

Φ̄′
j(t) =

M(t)

t
Φ̄j(t), t ∈ Jj ,(5.1a)

Φ̄j(τj) = Fj ,(5.1b)

where for j = 0, Φ̄0 ∈ Rn×r and F0 = Ẽ, and for j = 1, . . . , k − 1, Φ̄j ∈ Rn×n

and Fj are nonsingular matrices. For simplicity, we choose Fj = In, j ≥ 1. The
particular solution is defined in an analogous manner,

v′j(t) =
M(t)

t
vj(t) + f(t), t ∈ Jj ,(5.2a)

vj(τj) = 0.(5.2b)

Now a vector s̃ = (s0, s1, . . . , sk−1), s0 ∈ Rr, sj ∈ Rn, j = 1, . . . , k−1, is determined
in such a way that the piecewise function

zj(t) := Φ̄j(t)sj + vj(t), t ∈ Jj , j = 0, . . . , k − 1

is continuous and coincides with the solution z(t) of (3.2). s̃ can be computed from
the matching conditions

zj(τj+1) = zj+1(τj+1), j = 0, . . . , k − 2,

and the boundary conditions

Ba2Ẽs0 +Bb2Φ̄k−1(1)sk−1 = β2 −Bb2vk−1(1).
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This is a ((k−1)n+r)×((k−1)n+r) system of linear equations which has a unique
solution iff the boundary value problem (3.1) is well-posed. Let us assume that the
linear problems (5.1) and (5.2) can be solved in a numerically stable way. Then the
convergence analysis for multiple shooting reduces to the same considerations as
for single shooting, and it follows immediately that the numerical solution of (3.1)
obtained by multiple shooting shows the accuracy O(hp) provided that the initial
value problems (5.1) and (5.2) can be solved with the same accuracy on a grid Δh.

This approach is often called (standard)5 multiple shooting or parallel shooting,
cf. [1], [19]. For more sophisticated choices of Fj ∈ R

n×r, j ≥ 1, methods like the
stabilized march (cf. [29]) can be developed. For singular problems, however, we
have to be careful when applying multiple shooting. The reason is the following.
The above analysis is valid for a fixed mesh τ0, . . . , τk, where the refinement of
the grid for the IVP integrations takes place only in between these mesh points.
If the mesh is refined simultaneously with h → 0, τ1 = O(h) → 0, however, a
reduction in the convergence order of the method is observed. In general, no order
higher than 2 can be expected. For numerical evidence of this phenomenon see
Section 6. Consequently, it is necessary to fix (at least) τ1 > 0 for any step-
size h used in the IVP solver. The stabilized march is an algorithmic measure
to make the computations for multiple shooting more efficient, but the result is
equivalent to multiple shooting in exact arithmetic. Therefore, we cannot expect
the disadvantageous order reduction to recover if this technique is used instead of
standard multiple shooting. Indeed, the analysis in [29] reveals that for the stability
of the algorithm it is necessary to have the freedom to choose mesh points arbitrarily
close to each other. Nonetheless, multiple shooting can still be used to advantage
for singular problems if different IVP integrators and mesh selection strategies are
to be chosen close to and away from the singularity. An indication that such a
strategy may work can be found in [23]. Certainly, the stabilized march should also
be considered as an interesting alternative for the (regular!) problem on [τ1, 1]. We
would like to stress that multiple shooting with preset mesh points or even single
shooting have performed in quite a stable manner for singular problems. This
behavior may be explained by the fact that only moderately growing fundamental
modes are present in the general solution for a well-posed singular initial value
problem.

For the nonlinear problem (4.1) the situation is similar. We define a piecewise
problem

z′s̃,j(t) =
M(t)

t
zs̃,j(t) + f(t, zs̃,j(t)), t ∈ Jj ,(5.3a)

zs̃,j(τj) = Fjsj,(5.3b)

j = 0, . . . , k − 1, where sj and Fj are chosen as before. In [13] different variants
of the stabilized march for nonlinear problems have been proposed. For reasons
outlined above we do not discuss these algorithmic measures here, but would cer-
tainly consider them as part of an implementation of shooting methods for singular
boundary value problems.

5Except for the choice of F0 = Ẽ in order to obtain a well-posed initial value problem.
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The vector s̃ is now determined from the nonlinear system of equations

(5.4) F̃ (s̃) :=

(
Fj+1sj+1 − zs̃,j(τj+1), j = 0, . . . , k − 2

g(Ẽs0, zs̃,k−1(1))

)
= 0.

These equations can be solved using Newton’s method. All quantities involved
correspond to the quantities occurring in the single shooting procedure6.

Since s1, . . . , sk−1 can again be eliminated from (5.4), multiple shooting for (4.1)
is equivalent to single shooting for the same problem defined piecewise on Jj , j =
0, . . . , k − 1. Obviously the solution of (4.1) is isolated iff the solution of the equi-
valent piecewise problem is. Hence, the Newton iterate s̃m+1 can be uniquely
determined from s̃m if the first component sm0 is chosen sufficiently close to the
first component of the parameter vector s̃∗ associated with an isolated solution.
Thus, the Newton iteration is well-defined in a neighborhood of s̃∗. Since all other
assumptions of Theorem 4.3 can also be shown to hold for multiple shooting in
exactly the same manner, we obtain the same convergence result. This means that
multiple shooting provides an O(hp) approximation of an isolated solution of (4.1)
if a suitable guess for the starting value is available and an initial value problem
solver with convergence order O(hp) is used.

6. Numerical Results

To illustrate the theory, we consider the following nonlinear problem:

v′(t) =
1

t

(
0 1
0 −1

)
v(t) + t

(
0

− 2(t2+2)+8
(t2+2)2 v21(t) +

8t2

(t2+2)2 v
3
1(t)

)
, t ∈ (0, 1],

(
0 1
0 0

)
v(0) +

(
0 0
1 0

)
v(1) =

(
0

1/ ln(3)

)
.

Its exact solution reads

v(t) =

(
1

ln(t2 + 2)
,− 2t2

(t2 + 2) ln2(t2 + 2)

)T

.

All computations were carried out on a Silicon Graphics Power Challenge XL
R10000 with operating system IRIX V.4. Calculations were performed in quadruple
precision which on this system implies the machine accuracy EPS ≈ 6.16 · 10−33.

Table 1 shows the convergence results for single shooting, Table 2 for multiple
shooting with 8 mesh points τj . Moreover, Table 3 shows an example where multiple
shooting fails when the mesh is refined simultaneously with the step-size for the
IVP integration. The tables list (for each step-size h) the error in the numerically
computed initial value7, δ0, the convergence order, and the error constant, denoted
by p0, c0, respectively. Here, we assume a relation δ0 = c0h

p0 to hold. The subscript
[0, 1] is related to the same quantities computed for the maximal error over the entire
interval. tmax indicates the point where this maximum is assumed. The underlying
IVP solver has an order of convergence of O(h5). As predicted by the theory, we
observe the same convergence order for the shooting procedure, cf. Tables 1 and 2.

6In this case, however, they are defined in a piecewise manner.
7For multiple shooting, we use the same notation for the starting values in every point τj , j =

0, . . . , k − 1.
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Table 1. Convergence Order of Single Shooting.

h δ0 p0 c0 δ[0,1] tmax p[0,1] c[0,1]
1/5·2−1 6.2 · 10−04 5.989 −6.0 · 10+02 3.3 · 10−04 0.10000 4.175 −4.9 · 10+00

1/5·2−2 9.8 · 10−06 5.065 −3.8 · 10+01 1.8 · 10−05 0.15000 4.690 −2.3 · 10+01

1/5·2−3 2.9 · 10−07 4.971 −2.7 · 10+01 7.1 · 10−07 0.20000 4.862 −4.4 · 10+01

1/5·2−4 9.3 · 10−09 4.976 −2.7 · 10+01 2.4 · 10−08 0.26250 4.949 −6.4 · 10+01

1/5·2−5 2.9 · 10−10 4.985 −2.8 · 10+01 7.9 · 10−10 0.25625 4.978 −7.4 · 10+01

1/5·2−6 9.3 · 10−12 4.992 −2.9 · 10+01 2.5 · 10−11 0.25312 4.989 −7.9 · 10+01

1/5·2−7 2.9 · 10−13 4.995 −3.0 · 10+01 7.9 · 10−13 0.25156 4.994 −8.2 · 10+01

1/5·2−8 9.2 · 10−15 4.997 −3.1 · 10+01 2.4 · 10−14 0.25468 4.997 −8.3 · 10+01

1/5·2−9 2.8 · 10−16 4.998 −3.1 · 10+01 7.7 · 10−16 0.25429 4.998 −8.4 · 10+01

1/5·2−10 9.0 · 10−18 4.999 −3.1 · 10+01 2.4 · 10−17 0.25410 4.999 −8.5 · 10+01

1/5·2−11 2.8 · 10−19 7.6 · 10−19 0.25449

Table 2. Convergence Order of Multiple Shooting, 8 Mesh Points.

h δ
(8)
0 p

(8)
0 c

(8)
0 δ

(8)
[0,1]

tmax p
(8)
[0,1]

c
(8)
[0,1]

1/5 · 2−3 1.2 · 10−06 3.227 −1.7 · 10−01 1.2 · 10−06 0.32500 2.978 −7.2 · 10−02

1/5 · 2−4 1.2 · 10−07 4.253 −1.6 · 10+01 1.5 · 10−07 0.18750 4.237 −1.7 · 10+01

1/5 · 2−5 6.7 · 10−09 4.656 −1.2 · 10+02 8.2 · 10−09 0.18750 4.642 −1.4 · 10+02

1/5 · 2−6 2.6 · 10−10 4.837 −3.5 · 10+02 3.2 · 10−10 0.18125 4.824 −4.0 · 10+02

1/5 · 2−7 9.3 · 10−12 4.921 −6.0 · 10+02 1.1 · 10−11 0.17968 4.917 −7.3 · 10+02

1/5 · 2−8 3.0 · 10−13 4.961 −8.0 · 10+02 3.8 · 10−13 0.17812 4.959 −9.8 · 10+02

1/5 · 2−9 9.9 · 10−15 4.980 −9.4 · 10+02 1.2 · 10−14 0.17773 4.979 −1.1 · 10+03

1/5 · 2−10 3.1 · 10−16 4.990 −1.0 · 10+03 3.9 · 10−16 0.17773 4.990 −1.2 · 10+03

1/5 · 2−11 9.8 · 10−18 1.2 · 10−17 0.17744

A reduction of the convergence order down to order 2 is clearly visible in case of
the simultaneous grid refinement, τj+1 − τj = 5h, j = 0, . . . , k − 1, see Table 3 .

Figure 1 shows (the numbers of the iteration steps are displayed on the horizontal
axis) the empirical convergence order of Newton’s method for the computation
of the approximate solution of (4.3). Here, a finite difference approximation for

the Jacobian with an increment δ =
√
EPS was used, see the remark on page

12. The order of convergence is denoted by p and the error constant computed
from the errors of three consecutive Newton iterates by c, that is, |s̄m+1 − s̄m| =
c|s̄m− s̄m−1|p. Moreover, the modulus of the Jacobian Anum(s̄

m) for every iteration
step is given. As predicted, the scheme (4.7) converges quadratically except for the
last step where convergence drops to linear because the numerical solution is already
close to the true one.
We refer to [2] for more experiments and for investigations of further aspects related
to the implementation of the shooting method.
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[11] R. Frank and C. Überhuber, Iterated Defect Correction for Runge-Kutta methods,
Techn. Rep. Nr. 14/75, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technolgy,
Austria, 1975.

[12] F. Frommlet and E. Weinmüller, Asymptotic error expansions for singular boundary value
problems, Math. Models Methods Appl. Sci., 11 (2001), pp. 1–16.

[13] M. Hermann and D. Kaiser, Shooting methods for two-point BVPs with partially separated
endconditions, ZAMM, 75 (1995), pp. 651–668.

[14] F. d. Hoog and R. Weiss, Difference methods for boundary value problems with a singularity
of the first kind, SIAM J. Numer. Anal., 13 (1976), pp. 775–813.

[15] , The application of linear multistep methods to singular initial value problems, Math.
Comp., 32 (1977), pp. 676–690.

[16] , Collocation methods for singular boundary value problems, SIAM J. Numer. Anal.,
15 (1978), pp. 198–217.

[17] , The application of Runge-Kutta schemes to singular initial value problems, Math.
Comp., 44 (1985), pp. 93–103.

[18] H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell Pub-
lishing Company, Waltham, Mass., 1968.

[19] , Numerical Solution of Two Point Boundary Value Problems, no. 24 in Regional
Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.

[20] O. Koch, P. Kofler, and E. Weinmüller, Analysis of singular initial and terminal value
problems, Techn. Rep. Nr. 125/99, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of
Technology, Austria, 1999. Available at http://fsmat.at/~othmar/research.html.

[21] , The implicit Euler method for the numerical solution of singular initial value prob-
lems, Appl. Num. Math., 34 (2000), pp. 231–252.

[22] O. Koch and E. Weinmüller, Iterated Defect Correction for the solution of singular initial
value problems. To appear in SIAM J. Numer. Anal.

[23] P. Kofler, Theorie und numerische Lösung singulärer Anfangswertprobleme gewöhnlicher
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