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Abstract

Due to the increased computer power and advanced algorithms, quantum mechani-
cal calculations based on Density Functional Theory are more and more widely used
to solve real materials science problems. In this context large nonlinear generalized
eigenvalue problems must be solved repeatedly to calculate the electronic ground
state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative
solution of the eigenvalue problem can be more efficient provided it does not disturb
the convergence of the self-consistent-field problem. The blocked Davidson method
is one of the widely used and efficient schemes for that purpose, but its performance
depends critically on the preconditioning, i.e. the procedure to improve the search
space for an accurate solution. For more diagonally dominated problems, which ap-
pear typically for plane wave based pseudopotential calculations, the inverse of the
diagonal of (H − ES) is used. However, for the more efficient “augmented plane
wave + local-orbitals” basis set this preconditioning is not sufficient due to large
off-diagonal terms caused by the local orbitals. We propose a new preconditioner
based on the inverse of (H −λS) and demonstrate its efficiency for real applications
using both, a sequential and a parallel implementation of this algorithm into our
WIEN2k code.
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1 Introduction

In the last years quantum mechanical calculations based on Density Functional
Theory (DFT) [8] became very powerful due to the development of faster
computers and more efficient algorithms. The key problem of such calculations
is the solution of the Kohn-Sham (KS) equation [12]

ĤΨi(r) =
[

−
1

2
∇2 + veff (r)

]

Ψi(r) = ǫiΨi(r), (1)

where the Hamilton operator Ĥ contains the kinetic energy operator and an
effective potential veff (r). The latter depends on the electron density ρ(r),
which can be obtained from the wave functions Ψi, but obviously Ψi itself
depends on veff(r) and thus on ρ(r). Hence, an iterative solution of the KS
equations must be found by fixed point iteration, i.e. starting with some initial
guess for ρ(r) and iterating until the input and output densities, ρin(r) and
ρout(r), becomes nearly the same (within a threshold). This is called the self-
consistent-field (scf) procedure.

Each wave function Ψ is usually expanded in a set of (non-orthogonal) basis
functions φ(r)

Ψ(r) =
∑

j

cjφj(r) (2)

and the best wave functions are determined by a Rayleigh-Ritz procedure us-
ing the variational principle which leads to a generalized eigenvalue problem
(see Section 2, Eq. 3). The dimension of this problem depends on the inves-
tigated system (mainly on the number of atoms) and on the choice of the
basis set φ, but typically varies for large scale problems from 103 up to 105.
As mentioned above, the KS equations have to be solved iteratively, thus the
corresponding eigenvalue problem does not need to be solved exactly at the
beginning of the scf-iterations, but an approximate solution is fine as long as it
does not affect the convergence of the scf procedure. Note that the changes in
the eigenvalue problem become smaller and smaller once the scf-procedure is
nearly converged since veff will hardly change anymore. In addition, for most
applications not all eigenvalues are needed, but for instance in the linearized
augmented plane wave (LAPW), or its more efficient variant, the augmented
plane wave plus local orbital (APW+lo) method implemented in the WIEN2k
code [2,3,17,20,21], only the lowest 3-10 % of all ǫi are needed.

∗ Corresponding author.
Email address: pblaha@theochem.tuwien.ac.at (P. Blaha).
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The problem as sketched above calls for an iterative diagonalization scheme,
since an accurate solution of the eigenvalue problem is only necessary at
the very end of the scf-procedure and thus significant computer time can
be saved in comparison to standard diagonalization procedures (this will be
called “full diagonalization” later in this paper) based on LAPACK routines
[9] for Cholesky factorization of the overlap matrix S (zpotrf), reduction to
standard eigenvalue problem (zhegst), tri-diagonalization and solving for the
lowest k eigenvalues and eigenvectors (zheevx) and finally backtransformation
of the eigenvectors to the original generalized eigenvalue problem (ztrsm).

The iterative method for the diagonalization of generalized eigenproblems im-
plemented so far in the WIEN2k code [3] is a blocked version of the Davidson
method [4,5] which was introduced in [22]. Iterative methods for the problem
at hand are also discussed in [1,13–15,18,25,28]:

In [28], the method of RMM-DIIS (residual minimization/direct inversion in
the iterative subspace) is proposed and compared with the Davidson and Block
Davidson methods. The latter has the disadvantage that the doubling in the di-
mension of the search space is prohibitive for large initial subspaces. Therefore
the RMM-DIIS method is claimed to have the advantage that only matrices
of the size of the number of previous iteration steps are necessary. However,
in its original version the method is fundamentally sequential in nature which
the authors recognize as a major drawback [28], and which in the light of
the development of parallel and grid-enabled versions of the WIEN2k code
makes this approximate diagonalization unattractive. Recently, a reformula-
tion of RMM-DIIS [19] has brought this method into the scope for a parallel
implementation, however. The performance reported in [19] will be compared
to our method later on. Another interesting approach was put forward in [27]
where preconditioners similar to ours (based on approximations to the invers
of (H−λS)) were tested. However, these methods are designed for sparse ma-
trices and insulating systems, while our method is applicable also to magnetic
and metallic systems, where the occupation of the eigenvalues can significantly
change during the scf-cycle.

A comparison with several other methods shows that (disregarding compu-
tational cost) the block Davidson method displays the best improvement in
accuracy per iteration step due to the doubling of the search space [28]. Our
aim is to avoid this doubling of the subspace.

Ref. [25] gives an overview of the state of the art of iterative diagonalization
at that time, and demonstrates that a new preconditioned conjugate gradient
method compares most favorably with conjugate gradients, steepest descent
and imaginary time propagation. The VASP code [15], which is a highly ef-
ficient plane wave pseudopotential code, uses the RMM-DIIS method of [28]
in a variant proposed in [18]. They claim this method to be superior for very

3
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large problems [13] if an unblocked, band-by-band iteration is used.

In this paper, we propose an approximate diagonalization which is motivated
by the fact that the Davidson method previously implemented in the WIEN2k
code [22] has proven to be no longer satisfactory once the basis set has been
changed from the standard LAPW to the APW+lo basis set [17]. Apparently,
the underlying discretization, the importance of non-diagonal terms (the local
orbital contribution to the plane wave basis) and the adaptive basis set (the
basis set changes slightly with veff ) makes the preconditioning with only the
diagonal elements diag−1[H − ES] not efficient anymore. Our new method
is motivated by the improvements promised by the Jacobi-Davidson method
[23,24,26] as compared to the original Davidson method [5]. However, appli-
cation of the subspace expansion from the Jacobi-Davidson method seems
prohibitively expensive, hence we propose a simplification which uses an ap-
proximate computation of the subspace expansion related to an iterative so-
lution of the associated linear system of equations. Furthermore, we are going
to demonstrate in Section 4 that the method is superior to full diagonalization
in both efficiency and parallelism.

2 New Diagonalization Method

We want to compute the k eigenpairs corresponding to the lowest eigenvalues
of the generalized eigenproblem

HY = SY Λ, (3)

where H ∈ C
n×n is hermitian and S ∈ C

n×n is hermitian and positive def-
inite 1 . The solution of (3) consists of the (matrix of the) lowest eigenvalues
Λ = diag(λ1, . . . , λk) and matrix Y ∈ Cn×k containing k corresponding eigen-
vectors yj. The algorithm proceeds as follows:

• Input:

Y = [y1, . . . , yk] ∈ C
n×k. (4)

Usually these are approximations to eigenvectors which were computed in
the last SCF cycle.

• Compute the Ritz values (Rayleigh quotients)

ϑj =
y
†
jHyj

y
†
jSyj

, j = 1, . . . , k. (5)

1 This implies that there exists a basis of eigenvectors to the real eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn which are orthonormal w. r. t. the inner product defined by S.

4
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• Set up the search space [Y Z] ∈ Cn×2k with

zj = (H − λ̄S)−1(H − ϑjS)yj, j = 1, . . . , k. (6a)

or
zj = (H0 − λ̄S0)

−1(H − ϑjS)yj, j = 1, . . . , k. (6b)

where H0 and S0 are the matrices H and S of some previous (usually the
first) scf-cycle, so the inverse (H0 − λ̄S0)

−1 does not have to be recalculated
in each scf-cycle. λ̄ denotes some parameter for the tuning of the algorithm,
see the remarks below.

• Set up the reduced problem

H̃V = S̃V Γ, (7)

where

H̃ = [Y Z]†H [Y Z] =







Y †HY Y †HZ

Z†HY Z†HZ





 (8)

and

S̃ = [Y Z]†S[Y Z] =







Y †SY Y †SZ

Z†SY Z†SZ





 . (9)

• Compute eigenvectors V1:k of (7) corresponding to the lowest k eigenvalues
γ1 ≤ · · · ≤ γk. Here and in the following, V1:k refers to the first k columns of
a matrix V ∈ Cn×m for any m ≥ k. We may assume that V1:k is orthonormal
with respect to S̃, i.e., V

†
1:kS̃V1:k = Ik, where Ik denotes the identity matrix

of dimension k.
• Compute new approximations

Ynew = [Y Z]V1:k (10)

to the eigenvectors of (3).

Remarks:

• In the original Davidson method [5], the subspace is expanded according to

zj = diag−1(H − ϑjS)(H − ϑjS)yj, j = 1, . . . , k,

while in the full Jacobi-Davidson method [26], the subspace is expanded
according to

(In − Syjy
†
j)(H − ϑjS)(In − yjy

†
jS)zj = (H − ϑjS)yj. (11)

The subspace expansion in (6) corresponds to the first step of an iterative
solution of the linear equations system (11), which would be far too ex-
pensive to solve. We replace ϑj by a scalar λ̄ ∈ R which should be close

5
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to the eigenvalues of interest (typically our eigenvalues are less than one).
Numerical tests (see later) have shown that λ̄ usually has little influence on
the convergence and can also be set to zero, so that (H0 − λ̄S0)

−1 can be
replaced by H−1

0 .
• It is worth to mention that the preconditioner (H0 − λ̄S0)

−1 (6b) is so
efficient, that it needs to be calculated only once for a given basis set and
can be kept constant throughout the scf-cycle, but even during optimization
of internal atomic positions.

• Note that in (6) computing inverses of possibly singular matrices can easily
be avoided by slightly perturbing λ̄.

• If the SCF cycle is nearly converged, the initial guesses yj may almost
coincide with the corresponding exact eigenvectors of (3). In that case, the
residual (H −ϑjS)yj is zero, and the reduced system matrices H̃ and S̃ are
singular, hence the reduced problem (7) admits no unique solution. This
causes problems with the LAPACK routines used for the “small” (reduced)
eigenvalue problem (7) in the parallel version. Our work-around to refine
the remaining eigen-pairs is to project out the converged eigenvalues and
associated -vectors. Thus, if the index j corresponds to a converged state,
then we set the associated entries S̃j,i = H̃j,i := 0, S̃i,j = H̃i,j := 0, i =
1, . . . , m, H̃j,j = 108, S̃j,j = 1. This moves the eigenvalue associated with
the index j beyond the physically relevant range and thus this contribution
no longer appears in the further computations.

3 Implementation Details

The implementation of the iterative diagonalization scheme described above
(Eq. 3-10) is based on a highly optimized code using BLAS and LAPACK

(or ScaLAPACK) routines. It can solve either a real symmetric or a complex
hermitian eigenvalue problem (all in double precision) in sequential or (mpi-)
parallel mode.

In order to set up the reduced eigenvalue problem (7) we first form the prod-
ucts of HY and SY (zhemm), then evaluate the upper part of the reduced
Hamiltonian and overlap matrix Y †HY , Y †SY (zher2k). The diagonals of
these matrices are used to compute the Ritz values ϑj (5). This will be called
H1 in Fig. 1.

The search space represented by the matrix Z defined in (6) can be calculated
in two different ways:

• as a solution of the linear system of equations:

(H − λ̄S)zj = (H − ϑjS)yj, j = 1, . . . , k (12)

6
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Fig. 1. CPU time analysis of our iterative diagonalization scheme of a real symmetric
eigenvalue problem as function of matrix size and 600 eigenvalues (see text)

which is solved (zhetrs) after factorization of (H − λ̄S) (zhetrf) in cases
where the inverse cannot be stored on disk, or

• more efficiently, the inverse (H0 − λ̄S0)
−1 is calculated in the first scf-cycle

(zhetri) and stored on disk (only one triangle of the matrix is actually stored
in single precision to save disk space and speed up I/O). In all following
scf cycles it is read in and a simple matrix-matrix multiplication (zhemm)
generates Z.

Formation of H̃ and S̃ according to (8) and (9) requires two more multiplica-
tions HZ and SZ (zhemm) and these three matrix-matrix multiplications are
called Z1 in Fig. 1.

The products of HY and SY that enter the right-hand side of (8) and (9)
have been obtained before and H̃ and S̃ can be evaluated using Z†HY , Z†SY ,
Z†HZ and Z†SZ (zgemm). The reduced eigenproblem (7), which is only of
dimension 2 · k, is usually solved quickly by full diagonalization as described
in the introduction. The time spent on this part is call Hreduced in Fig. 1.

7
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4 Numerical Results

We start this section by giving a decomposition of the total CPU time of
the iterative scheme into the different tasks. At the first iterative step the
inverse (H0− λ̄S0)

−1 needs to be calculated and stored to disk. This is an αN3

operation like the full diagonalization, but the prefactor α is much smaller for
inversion of a matrix [7] and thus this step is usually 2-4 times faster than full
diagonalization. In all later scf cycles (typically 20-200 cycles, in particular
when also a structural optimization is performed) the inverse is read from
disk, which even for the biggest test case takes only a few seconds.

From Fig.1 we can see that our iterative diagonalization scales nearly perfectly
with N2, similar to the amount of disk space (storage) of (H0 − λ̄S0)

−1. Most
of the time is spent on the multiplication of the H or S matrices with the
Y or Z vectors, which scales as N2 · k and our algorithm needs five such
multiplications: HY , SY , HZ, SZ and a product forming Z. It is evident
from Fig. 1 that the CPU time spent on two products HY , SY and two rank
2k updates (H1), as well as forming Z, HZ and SZ (three products, Z1) is
usually the dominating part. The setup of H̃ and S̃ (8 and 9) and the solution
of the reduced eigenvalue problem (7) is also indicated in Fig. 1. For small
basis sets and a large number of eigenvalues this can be a significant fraction
of the total time, but for realistic cases the effort proportional to (2 · k)3 is
always small.

As discussed above, the CPU time of our iterative algorithm scales propor-
tionally to α(N2 ·k), where N is the size of H and k is the number of evaluated
eigenvalues. Since the full diagonalization scales proportionally to α′N3 the
gain in the CPU time depends on the ratio of α and α′ and on how many
eigenvalues k are needed. The actual speedup is indicated in Fig. 2, where
the ratio of the CPU time of full and iterative diagonalization is shown for
three different values of the number of eigenvalues k (and as a function of the
matrix size N). For a “realistic” ratio of 5% between k and N a speedup of 8
can easily be achieved. Comparison with other algorithms in the literature is
difficult, but e. g. in [19] only a factor of 3.3 (see their Table 2 for example
using 32 processors) has been reached.

As mentioned in the introduction, our ultimate goal is to solve the KS equa-
tions for a particular solid or molecule self-consistently. Thus, to evaluate the
efficiency and usefulness of this iterative diagonalization one should in fact
consider the gain in time for one discrete scf-cycle, i.e. not only the time for
diagonalization but also for setting up the eigenvalue problem as well as other
parts like the calculation of the electron density ρ and the potential veff . Fur-
thermore, one has to verify that the iterative diagonalization scheme does not
increase the number of scf-cycles that are necessary to converge ρ. We will

8
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Fig. 2. Ratio of the CPU time of full and iterative diagonalization as function of
matrix size for three different numbers of eigenvalues

demonstrate this on two very different examples below:

Since WIEN2k is a code utilizing a finite unit cell with 3-dimensional periodic
boundary conditions, a calculation of a single molecule must utilize large cells
so that the molecules are well separated from each other. This leads to a rather
large number of APW basis functions. We have done such calculations for the
CO molecule and such an example can be considered as extreme case where, on
the one hand, the time for setting up the eigenvalue problem (H, S) is rather
negligible compared to the diagonalization, because they scale like N2

bas·Natoms,
where the number of basis functions Nbas is 2800 while Natoms is just 2 for
this example. The eigenvalue problem is complex hermitian, because there is
no inversion symmetry present. On the other hand only one k-point in the
Brillouin zone (BZ) needs to be considered, i.e. only one eigenvalue problem
needs to be solved in every scf cycle and thus for more difficult to evaluate
DFT functionals than the one used here, there is a relatively large fraction of
time spent in the calculation of the potential veff . Furthermore, the number
of required eigenvalues ǫi will be extremely small (below 1 % of the matrix
size). In fact as can be seen from Table 1 about 88 % of the time goes into the
diagonalization. Using our new iterative scheme, the diagonalization time can
be reduced by a factor of 30, so that the eigenvalue problem becomes only a
small fraction of the total time of one scf-cycle. As noted above, it is important
that an iterative diagonalization scheme does not increase the number of scf-

9
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task time (s) iterations(λ̄=0/-1) time scf(λ̄=0/-1) (s)

ρ, veff 5.0 - -

H,S 3.9 - -

full diag. 67.3 9 686

iter. diag (8 ǫi) 1.6 31/13 426/237

iter. diag (16 ǫi) 2.1 13/12 243/231

iter. diag (32 ǫi) 2.9 13/12 253/241

Table 1
Timings of different parts (see text) of the calculations for a CO molecule. The scf-
timings take into account the required number of iterations to reach a convergence
of 5 · 10−5 for the charge distance.

cycles too much, otherwise the gain in speed may be lost in the additional
cycles required to reach self-consistency. In Fig. 3 we show the charge distance
(the integral |ρin − ρout|) as function of the number of scf-iterations. The CO
molecule has 5 occupied eigenstates and when we calculate just 8 states (i.e.
only 3 unoccupied states), the number of cycles would increase drastically and
there would be only a rather small gain in time. This case with such a limited
search space is also one of the few examples we have found, where the value
of λ̄ has a large influence on the quality of the solution. Changing λ̄ from 0
(this implies using just H−1 as preconditioner) to λ̄ = −1 (for a molecule in
a big box the highest occupied eigenvalue is around −0.5 Ry, while for bulk
calculations it is usually around +0.5 Ry) brings the number of scf-cycles back
to a normal value. On the other hand, with 16 or 32 eigenvalues the required
number of scf-cycles does not increase significantly and a large saving of cpu-
time by about a factor of three can be obtained (see Table 1).

As a representative example of a typical medium-sized bulk calculation, we
next present results for Stibnite, Sb2S3, a compound with 20 atoms/cell and
inversion symmetry, thus the matrix elements are real numbers with Nbas =
2400. Typically one has to use about 10 k-points in the BZ, i.e. we have to
solve 10 different eigenvalue problems in every scf-cycle, which has been taken
into account for the corresponding scf timings listed in Table 2. Setting up the
eigenvalue problem is here a significant time (36 % for full diagonalization)
and it clearly dominates when the iterative diagonalization is used. The gain in
speed is not so large, because of the relatively small matrix and the fair amount
of eigenvalues (about 10 %) required in this case, but still the total cpu time
of the scf-procedure can be reduced by more than 40 %. The convergence of
the scf-cycles depends only mildly on the number of eigenvalues and a number
typically twice the number of occupied bands (96 in this case) is more than
sufficient (see Fig. 4).

For large scale calculations (more than 64 atoms / unit cell) the dimension

10
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Fig. 3. Charge distance (integral |ρin − ρout|) as function of the number of scf-iter-
ations for the CO molecule using full or iterative diagonalization (with 8, 16 or 32
eigenvalues and λ̄ = 0 and -1). The hatched region indicates the typically desired
convergence criterion.

task time (s) iterations time scf (s)

ρ, veff 35.0 - -

H,S 8.8 - -

full diag. 15.8 13 3523

iter. diag (150 ǫi) 2.7 16 2379

iter. diag (216 ǫi) 3.7 15 2379

iter. diag (361 ǫi) 6.4 13 2403

Table 2
Timings of different parts (see text) of the calculations for Sb2S3. The scf-timings
take into account 10 k-points and the required number of iterations to reach a
convergence of 5 · 10−5 for the charge distance.

of the eigenvalue problem becomes so large that it will either take very long
time on a single processor or eventually the matrices cannot even be stored
in memory on a single node. Thus, fine grained, mpi-based parallelization dis-
tributing the matrices over many processors and using ScaLAPACK routines
[10] for linear algebra operations is necessary. In the following we present re-
sults for a 3x3 super-cell of a h-BN/Ni(111) surface model, which contains
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Fig. 4. Charge distance (integral |ρin − ρout|) as function of the number of scf-iter-
ations for Sb2S3 using full or iterative diagonalization (with 150, 216 or 361 eigen-
values). The hatched region indicates the typically desired convergence criterion.

99 atoms/cell. Since this is a magnetic and metallic system, 8 k-points and a
spin-polarized calculation (i.e. 16 different eigenvalue problems per scf-cycle)
had to be performed. The basis set size Nbas = 16900 (real matrix elements)
is so large, that we could not run this example on a single cpu, but the basic
timings will be given for 4 cpus (cluster of AMD dual-core opterons with in-
finiband network). For the iterative diagonalization we used 950 eigenvalues
(about 600 are occupied) and virtually no scf-convergence degradation was
found. As evident from Table 3, the time spent in calculating ρ and veff is al-
most negligible, but 70 % of the time is spent during full diagonalization. The
iterative scheme is more than ten times faster and thus only 25 % of the time
is spent on the diagonalization. Overall the time of an scf cycle can be reduced
by a factor of three. Still the cpu time in particular for the setup of H and
S is so large that further parallelization is desirable and in Fig. 5 the scaling
of setup and diagonalization of this eigenvalue problem up to 64 cpus is pre-
sented. It should be noted that these measurements were done under full-load
conditions of the machine, which leads to some irregularities in the reported
timings. The setup of the matrix elements is split into a spherical part (Hsph,
Ssph), which takes about 2/3 of the total setup time and a non-spherical part
(Hnsp and Snsp). Hsph, Ssph scales perfectly as it has basically no communica-
tion and also no sequential part. The calculation of the non-spherical matrix
elements Hnsp and Snsp still scales very well, but as one cannot avoid some se-
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task time (s)

ρ, veff 125

H,S 1080

full diag. 2850

iter. diag (950 ǫi) 250

one scf cycle (full diag.) 64050

one scf cycle (iter. diag. 950 ǫi ) 22450

Table 3
Timings on 4-processors of different parts (see text) of the calculations for a 3x3
super-cell of a h-BN/Ni(111) surface model with 99 atoms/cell (Nbas = 16900). The
scf-timings assume 16 k-points.

quential steps, decreasing efficiency is to be expected for more cpus. For up to
32 cpus the iterative diagonalization scales slightly better than full diagonal-
ization (matrix-matrix multiplication vs. solution of eigenvalue problem), but
then the overhead of the network based I/O and problems due to the stacked
infiniband switch degrades the performance. Nevertheless, even for 64 cpus
the iterative diagonalization is 10 times faster than full diagonalization and
comparable to the setup of Hsph, Ssph and Hnsp and Snsp, respectively. The effi-
ciency (speedup / number of processors) of the full (iterative) diagonalization
is 63 (75) % for 32 processors and 47 (43) % for 64 processors.

5 Conclusions

When one needs to solve the KS equations self-consistently, one has to solve
a sequence of closely related generalized eigenvalue problems thus an iterative
solution could lead to a significant speed-up. We propose a new preconditioner
for the blocked Davidson method to solve efficiently generalized eigenvalue
problems also for the case of non-diagonally dominant matrices. Commonly
the inverse of the diagonal of (H − ϑjS) is used as preconditioner, but we
use the inverse of (H − λ̄S) for a fixed value λ̄ instead. The algorithm has
been implemented in both, a sequential and a parallel version of our WIEN2k
code and we demonstrate that it leads to a fast, stable and efficient scheme.
In addition the new iterative scheme should show better scaling properties
than the full diagonalization, at least as long as network I/O does not limit
its performance. Most importantly, the approximate solution of the eigenvalue
problem does not affect the solution of the self-consistent-field problem (i.e.
the number of scf iterations) provided a sufficient number of states is included.

This scheme has already been tested on an everyday basis by the large WIEN2k
community [11] for several month and allowed us to increase the size of a ma-
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Fig. 5. Speedup of various parts of the eigenvalue problem with the number of
processors for a 3x3 super-cell of a h-BN/Ni(111) surface model with 99 atoms/cell
(Nbas = 16900).

terials science problem by a factor of up to two. Recently we could solve a
big nanoscience problem with more than 1100 atoms/unit cell [6,16], which is
metallic and contains many transition metal atoms.
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